• 549.00 KB
  • 2021-05-13 发布

高考理科数学课标试题及答案

  • 6页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2016年普通高等学校招生全国统一考试 理科数学 (1) 设集合,,则 ‎(A)(,) (B)(,) (C)(,) (D)(,)‎ (2) 设,其中,是实数,则 ‎(A)1 (B) (C) (D)2‎ (3) 已知等差数列前9项的和为27,,则 ‎(A)100 (B)99 (C)98 (D)97‎ (4) 某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 ‎(A) (B) (C) (D)‎ (5) 已知方程表示双曲线,且该双曲线两焦点间的距离为4,则的取值范围是 ‎ ‎(A)(,) (B)(,) (C)(,) (D)(,)‎ (6) 如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是,则它的表面积是 ‎(A)17π (B)18π (C)20π (D)28π (7) 函数在的图象大致为 ‎(A) (B) (C) (D)‎ (8) 若,,则 ‎(A) (B) ‎ ‎ (C) (D)‎ (1) 执行右图的程序框图,如果输入的,,,‎ 则输出的值满足 ‎(A) (B) ‎ ‎(C) (D)‎ (2) 以抛物线的顶点为圆心的圆交于,两点,交的准线 于,两点.已知,,则的焦点到准线的距离为 ‎(A)2 (B)4 (C)6 (D)8‎ (3) 平面过正方体的顶点,∥平面,∩平面,∩平面,则所成角的正弦值为 ‎(A) (B) (C) (D)‎ (4) 已知函数,为的零点,为图象的对称轴,且在单调,则的最大值为 ‎(A)11 (B)9 (C)7 (D)5‎ (5) 设向量,,且,则 .‎ (6) 的展开式中,的系数是 .(用数字填写答案)‎ (7) 设等比数列满足,,则的最大值为 .‎ (8) 某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时.生产一件A产品的利润为2100元,生产一件B产品的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600工时的条件下,生产产品A、产品B的利润之和的最大值为 .‎ (9) ‎(本小题满分12分)‎ 的内角的对边分别为,已知.‎ ‎(Ⅰ)求;‎ ‎(Ⅱ)若,的面积为.求的周长.‎ (1) ‎(本小题满分12分)‎ 如图,在以为顶点的五面体中,面为正方形,,,且二面角与二面角都是60°.‎ ‎(Ⅰ)证明:平面⊥平面;‎ ‎(Ⅱ)求二面角的余弦值.‎ (2) ‎(本小题满分12分)‎ 某公司计划购买2台机器,该种机器使用三年后即被淘汰. 机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元. 在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种三年使用期内更换的易损零件数,得下面柱状图:‎ 以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记表示2台机器三年内共需更换的易损零件数,表示购买2台机器的同时购买的易损零件数.‎ ‎(Ⅰ)求的分布列;‎ ‎(Ⅱ)若要求,确定的最小值;‎ ‎(Ⅲ)以购买易损零件所需要的期望值为决策依据,在与之中选其一,应选用哪个?‎ (3) ‎(本小题满分12分)‎ ‎ 设圆的圆心为,直线过点且与轴不重合,交圆于两点,过作的平行线交于点.‎ ‎(Ⅰ)证明为定值,并写出点的轨迹方程;‎ ‎(Ⅱ)设点的轨迹为曲线,直线交于两点,过且与垂直的直线与圆交于两点,求四边形面积的取值范围.‎ (1) ‎(本小题满分12分)‎ ‎ 已知函数有两个零点.‎ ‎(Ⅰ)求的取值范围;‎ ‎(Ⅱ)设是的两个零点,证明:.‎ 请考生在第(22)、(23)、(24)题中任选一题作答,如果多做,则按所做的第一题计分。‎ (2) ‎(本小题满分10分)选修4-1:几何证明选讲 ‎ 如图,是等腰三角形,.以为圆心,为半径作圆.‎ ‎(Ⅰ)证明:直线与⊙相切;‎ ‎(Ⅱ)点在⊙上,且四点共圆,证明:.‎ (1) ‎(本小题满分10分)选修4-4:坐标系与参数方程 在直角坐标系中,曲线的参数方程为(为参数,).在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线:.‎ ‎(Ⅰ)说明是哪一种曲线,并将的方程化为极坐标方程;‎ ‎(Ⅱ)直线的极坐标方程为,其中满足,若曲线与的公共点都在上,‎ 求.‎ (2) ‎(本小题满分10分)选修4-5:不等式选讲 已知函数.‎ ‎(Ⅰ)在答题卡第(24)题图中画出的图像;‎ ‎(Ⅱ)求不等式的解集.‎ 参考答案 一、选择题 DBCBA ADCCB AB 二、填空题 13. -2 14. 10 15. 64 16. 216000 ‎ 三、解答题 ‎17、(1) (2)周长为 ‎ ‎18、(1)证明略 (2)‎ ‎19、(1)分布列 X ‎ 16‎ ‎ 17‎ ‎ 18 ‎ ‎ 19‎ ‎ 20‎ ‎ 21‎ ‎ 22‎ P ‎0.04‎ ‎ 0.16‎ ‎ 0.24‎ ‎ 0.24‎ ‎ 0.2‎ ‎ 0.08‎ ‎ 0.04‎ ‎ ‎ ‎(2)的最小值为19 ‎ ‎(3)选 ‎20、(1) (2)‎ ‎21、(1) (2)证明略 ‎23、(1) (2)‎ ‎24、(1)图象略 (2)‎