- 990.00 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
绝密 ★ 启用前
2008年普通高等学校招生全国统一考试(天津卷)
数学(文史类)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。第Ⅰ卷1至2页,第Ⅱ卷3至10页。考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!
第Ⅰ卷
注意事项:
1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、科目涂写在答题卡上,并在规定位置粘贴考试用条形码。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。答在试卷上的无效。
3.本卷共10小题,每小题5分,共50分。
参考公式:
如果时间A,B互斥,那么 球的表面积公式
P(A+B)=P(A)+P(B) .
如果事件A,B相互独立,那么 其中R表示球的半径.
P(A·B)=P(A)·P(B)
一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的.
(1)设集合,,,则
(A) (B) (C) (D)
解析:因为,所以,选A.
(2)设变量满足约束条件,则目标函数的最大值为
(A)2 (B)3 (C)4 (D)5
解析:如图,由图象可知目标函数过点时取得最大值,,选D.
(3)函数()的反函数是
(A)() (B)()
(C)() (D)()
解析:当时,,解得,选A.
(4)若等差数列的前5项和,且,则
(A)12 (B)13 (C)14 (D)15
解析:,所以,选B.
(5)设是两条直线,是两个平面,则的一个充分条件是
(A) (B)
(C) (D)
解析:选C,A、B、D的反例如图.
(6)把函数()的图象上所有点向左平行移动个单位长度,再把所得图象上所有点的横坐标缩短到原来的倍(纵坐标不变),得到的图象所表示的函数是
(A), (B),
(C), (D),
解析:选C,
.
(7)设椭圆(,)的右焦点与抛物线
的焦点相同,离心率为,则此椭圆的方程为
(A) (B) (C) (D)
解析:抛物线的焦点为,椭圆焦点在轴上,排除A、C,由排除D,选B.
(8)已知函数,则不等式的解集是
(A) (B) (C) (D)
解析:依题意得,选A.
(9)设,,,则
(A) (B) (C) (D)
解析:,因为,所以,选D.
(10)设,若对于任意的,都有满足方程,这时的取值集合为
(A) (B) (C) (D)
解析:易得,在上单调递减,所以,故,选B.
第Ⅱ卷
注意事项:
1.答卷前将密封线内的项目填写清楚。
2.用钢笔或圆珠笔直接答在试卷上
3.本卷共12小题,共100分。
二、填空题(本大题共6个小题,每小题4分,共24分.把答案填在题中横线上.)
(11)一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工________________人.
解析:依题意知抽取超过45岁的职工为.
(12)的二项展开式中,的系数是________________(用数字作答).
解析:,,所以系数为10.
(13)若一个球的体积为,则它的表面积为________________.
解析:由得,所以.
(14)已知平面向量,.若,则_____________.
解析:因为,所以.
(15)已知圆C的圆心与点关于直线对称.直线与圆C相交于两点,且,则圆C的方程为_______________________.
解析:圆心的坐标为,所以,圆的方程为.
(16)有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有________________种(用数字作答).
解析:数字之和为10的情况有4,4,1,1、 4,3,2,1、 3,3,2,2.
所以共有种不同排法.
三、解答题(本题共6道大题,满分76分)
(17)(本小题满分12分)
已知函数()的最小值正周期是.
(Ⅰ)求的值;
(Ⅱ)求函数的最大值,并且求使取得最大值的的集合.
(17)本小题主要考查特殊角三角函数值、两角和的正弦、二倍角的正弦与余弦、函数的性质等基础知识,考查基本运算能力.满分12分.
(Ⅰ)解:
由题设,函数的最小正周期是,可得,所以.
(Ⅱ)由(Ⅰ)知,.
当,即时,取得最大值1,所以函数的最大值是,此时的集合为.
(18)(本小题满分12分)
甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与,且乙投球2次均未命中的概率为.
(Ⅰ)求乙投球的命中率;
(Ⅱ)求甲投球2次,至少命中1次的概率;
(Ⅲ)若甲、乙两人各投球2次,求两人共命中2次的概率.
(18)本小题主要考查随机事件、互斥事件、相互独立事件等概率的基础知识,考查运用概率知识解决实际问题的能力.满分12分.
(Ⅰ)解法一:设“甲投球一次命中”为事件A,“乙投球一次命中”为事件B.
由题意得
解得或(舍去),所以乙投球的命中率为.
解法二:设设“甲投球一次命中”为事件A,“乙投球一次命中”为事件B.
由题意得,于是或(舍去),故.
所以乙投球的命中率为.
(Ⅱ)解法一:由题设和(Ⅰ)知.
故甲投球2次至少命中1次的概率为
解法二:
由题设和(Ⅰ)知
故甲投球2次至少命中1次的概率为
(Ⅲ)由题设和(Ⅰ)知,
甲、乙两人各投球2次,共命中2次有三种情况:甲、乙两人各中一次;甲中两次,乙两次均不中;甲两次均不中,乙中2次。概率分别为
,
,
所以甲、乙两人各投两次,共命中2次的概率为.
(19)(本小题满分12分)
如图,在四棱锥中,底面是矩形.已知.
(Ⅰ)证明平面;
(Ⅱ)求异面直线与所成的角的大小;
(Ⅲ)求二面角的大小.
(19)本小题主要考查直线和平面垂直,异面直线所成的角、二面角等基础知识,考查空间想象能力,运算能力和推理论证能力.满分12分.
(Ⅰ)证明:在中,由题设可得
于是.在矩形中,.又,
所以平面.
(Ⅱ)解:由题设,,所以(或其补角)是异面直线与所成的角.
在中,由余弦定理得
由(Ⅰ)知平面,平面,
所以,因而,于是
是直角三角形,故.
所以异面直线与所成的角的大小为.
(Ⅲ)解:过点P做于H,过点H做于E,连结PE
因为平面,平面,所以.又,
因而平面,故HE为PE再平面ABCD内的射影.由三垂线定理可知,
,从而是二面角的平面角。
由题设可得,
于是再中,
所以二面角的大小为.
(20)(本小题满分12分)
在数列中,,,且().
(Ⅰ)设(),证明是等比数列;
(Ⅱ)求数列的通项公式;
(Ⅲ)若是与的等差中项,求的值,并证明:对任意的,是与的等差中项.
(20)本小题主要考查等差数列、等比数列的概念、等比数列的通项公式及前项和公式,考查运算能力和推理论证能力及分类讨论的思想方法.满分12分.
(Ⅰ)证明:由题设(),得
,即,.
又,,所以是首项为1,公比为的等比数列.
(Ⅱ)解法:由(Ⅰ)
,
,
……
,().
将以上各式相加,得().
所以当时,
上式对显然成立.
(Ⅲ)解:由(Ⅱ),当时,显然不是与的等差中项,故.
由可得,由得, ①
整理得,解得或(舍去).于是.
另一方面,,
.
由①可得,.
所以对任意的,是与的等差中项.
(21)(本小题满分14分)
已知函数(),其中.
(Ⅰ)当时,讨论函数的单调性;
(Ⅱ)若函数仅在处有极值,求的取值范围;
(Ⅲ)若对于任意的,不等式在上恒成立,求的取值范围.
(21)本小题主要考查利用导数研究函数的单调性、函数的最大值、解不等式等基础知识,考查综合分析和解决问题的能力.满分14分.
(Ⅰ)解:.
当时,.
令,解得,,.
当变化时,,的变化情况如下表:
0
2
-
0
+
0
-
0
+
↘
极小值
↗
极大值
↘
极小值
↗
所以在,内是增函数,在,内是减函数.
(Ⅱ)解:,显然不是方程的根.
为使仅在处有极值,必须成立,即有.
解些不等式,得.这时,是唯一极值.
因此满足条件的的取值范围是.
(Ⅲ)解:由条件,可知,从而恒成立.
当时,;当时,.
因此函数在上的最大值是与两者中的较大者.
为使对任意的,不等式在上恒成立,当且仅当,即,在上恒成立.
所以,因此满足条件的的取值范围是.
(22)(本小题满分14分)
已知中心在原点的双曲线C的一个焦点是,一条渐近线的方程是.
(Ⅰ)求双曲线C的方程;
(Ⅱ)若以为斜率的直线
与双曲线C相交于两个不同的点M,N,且线段MN的垂直平分线与两坐标轴围成的三角形的面积为,求的取值范围.
(22)本小题主要考查双曲线的标准方程和几何性质、直线方程、两条直线垂直、线段的定比分点等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理运算能力.满分14分.
(Ⅰ)解:设双曲线的方程为().由题设得
,解得,所以双曲线方程为.
(Ⅱ)解:设直线的方程为().点,的坐标满足方程组
将①式代入②式,得,整理得.
此方程有两个一等实根,于是,且.整理得. ③
由根与系数的关系可知线段的中点坐标满足
,.
从而线段的垂直平分线方程为.
此直线与轴,轴的交点坐标分别为,.由题设可得.整理得,.
将上式代入③式得,整理得,.
解得或.
所以的取值范围是.