• 758.00 KB
  • 2021-05-13 发布

陕西_宁夏_海南_黑龙江_吉林2011年高考理科数学试题含答案(新课标卷)

  • 9页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2011年普通高等学校招生全国统一考试(模拟卷一)‎ 理科数学 第I卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.‎ ‎(1)已知集合,,则 ‎(A) (B) (C) (D)‎ ‎(2)已知复数,是的共轭复数,则 ‎(A) (B) (C)1 (D)2‎ ‎(3)曲线在点处的切线方程为 ‎(A) (B) (C) (D)‎ ‎(4)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为,角速度为1,那么点P到x轴距离d关于时间t的函数图像大致为 ‎(5)已知命题 ‎:函数在R为增函数,‎ ‎:函数在R为减函数,‎ 则在命题:,:,:和:中,真命题是 ‎(A), (B), (C), (D),‎ ‎(6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为 ‎(A)100 (B)200 (C)300 (D)400‎ ‎(7)如果执行右面的框图,输入,则输出的数等于 ‎(A)‎ ‎(B)‎ ‎(C)‎ ‎(D)‎ ‎(8)设偶函数满足,则 ‎(A) (B)‎ ‎(C) (D)‎ ‎(9)若,是第三象限的角,则 ‎(A) (B) (C)2 (D)‎ ‎(10)设三棱柱的侧棱垂直于底面,所有棱的长都为a,顶点都在一个球面上,则该球的表面积为 ‎(A) (B) (C) (D)‎ ‎(11)已知函数若a,b,c互不相等,且,则abc的取值范围是 ‎(A) (B) (C) (D)‎ ‎(12)已知双曲线E的中心为原点,F(3,0)是E的焦点,过F的直线l与E相交于A,B两点,且AB的中点为N(-12,-15),则E的方程为 ‎(A) (B) (C) (D)‎ 第Ⅱ卷 本卷包括必考题和选考题两部分。第(13)题~第(21)题为必考题,每个试题考生都必须做答。第(22‎ ‎)题~第(24)题为选考题,考生根据要求做答。‎ 二、填空题:本大题共4小题,每小题5分。‎ ‎(13) 设y=f(x)为区间[0,1]上的连续函数,且恒有0≤f(x) ≤1,可以用随机模拟方法近似计算积分,先产生两组(每组N个)区间[0,1]上的均匀随机数,…,和,…,,由此得到N个点(,)(i=1,2,…,N),在数出其中满足≤((i=1,2,…,N))的点数,那么由随机模拟方法可得积分的近似值为 .‎ ‎(14)正视图为一个三角形的几何体可以是 .(写出三种)‎ ‎(15)过点A(4,1)的圆C与直线相切于点 B(2,1).则圆C的方程为 .‎ ‎(16)在中,D为边BC上一点,BD=DC,=120°,AD=2,若的面积为,则= ‎ ‎ ‎ 三、解答题:解答应写出文字说明.证明过程或演算步骤 ‎(17)(本小题满分l2分) ‎ 设数列满足,‎ ‎ (Ⅰ)求数列的通项公式:‎ ‎ (Ⅱ)令,求数列的前n项和.‎ ‎ ‎ ‎(18)(本小题满分12分)‎ ‎ 如圈,己知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,⊥BD垂足为H,PH是四棱锥的高,E为AD中点. ‎ ‎(Ⅰ)证明:PE⊥BC ‎(Ⅱ)若==60°,求直线PA与平面PEH所成角的正弦值.‎ ‎(19)(本小题满分12分)‎ ‎ 为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:‎ ‎(Ⅰ)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;‎ ‎(Ⅱ)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?‎ ‎(Ⅲ)根据(Ⅱ)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.‎ ‎(20)(本小题满分12分)‎ 设分别是椭圆E:(a>b>0)的左、右焦点,过斜率为1的直线l与E 相较于A,B两点,且,,成等差数列.‎ ‎(Ⅰ)求E的离心率;‎ ‎(Ⅱ)设点P(0,-1)满足,求E的方程.‎ ‎(21)(本小题满分12分)‎ ‎ 设函数f(x)=.‎ ‎(Ⅰ)若a=0,求f(x)的单调区间;‎ ‎(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.‎ ‎[来源:Z*xx*k.Com]‎ ‎[来源:Zxxk.Com]‎ 请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B铅笔在答题卡上把所选题目的题号涂黑.‎ (22) ‎(本小题满分10分) 选修4—1;几何证明选讲 如图,已知圆上的弧=,过C点的圆的切线与BA的延长线交于E点,证明:‎ ‎(Ⅰ)=;‎ ‎(Ⅱ);‎ (23) ‎(本小题满分10分)选修4—4;坐标系与参数方程 已知直线: (t为参数),圆: (为参数),‎ ‎(Ⅰ)当=时,求与的交点坐标;‎ ‎(Ⅱ)过坐标原点O作的垂线,垂足为A,P为OA的中点,当变化时,求P点轨迹的参数方程,并指出它是什么曲线;‎ ‎[来源:Z§xx§k.Com]‎ ‎(24) (本小题满分10分)选修4—5;不等式选讲 设函数f(x)=‎ ‎(Ⅰ)画出函数y=f(x)的图像;‎ ‎(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.‎