- 1.20 MB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2016年全国高考理科数学试题全国卷2
第Ⅰ卷
一.选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
(1)已知在复平面内对应的点在第四象限,则实数m的取值范围是
(A)(B)(C)(D)
(2)已知集合,,则( )
(A) (B) (C) (D)
(3)已知向量,且,则m=( )
(A)-8 (B)-6 (C)6 (D)8
(4)圆的圆心到直线的距离为1,则a=( )
(A) (B) (C) (D)2
(5)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )
(A)24 (B)18 (C)12 (D)9
(6)下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )
(A) (B) (C) (D)
(7)若将函数的图像向左平移个单位长度,则平移后图象的对称轴为( )
(A) (B)
(C) (D)
(8)中国古代有计算多项式值的秦九韶算法,下图是实现该算法的程序框图.执行该程序框图,若输入的,依次输入的为2,2,5,则输出的( )
(A)7 (B)12 (C)17 (D)34
(9)若,则( )
(A) (B) (C) (D)
(10)从区间随机抽取个数,,…,,,,…,,构成n个数对,,…,,其中两数的平方和小于1的数对共有个,则用随机模拟的方法得到的圆周率的近似值为
(A) (B) (C) (D)
(11)已知是双曲线的左,右焦点,点在上,与轴垂直,,则E的离心率为( )
(A) (B) (C) (D)2
(12)已知函数满足,若函数与图像的交点为则( )
(A)0 (B) (C) (D)
第Ⅱ卷
二、填空题:本大题共4小题,每小题5分
(13) 的内角的对边分别为,若,,,则 .
(14) 是两个平面,是两条直线,有下列四个命题:
(1)如果,那么.[]
(2)如果,那么.
(3)如果,那么.
(4)如果,那么与所成的角和与所成的角相等.
其中正确的命题有 ..(填写所有正确命题的编号)
(15)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 .
(16)若直线是曲线的切线,也是曲线的切线,则 .
三.解答题:解答应写出文字说明,证明过程或演算步骤.
17.(本题满分12分)为等差数列的前n项和,且记,其中表示不超过的最大整数,如.
(Ⅰ)求;
(Ⅱ)求数列的前1 000项和.
18.(本题满分12分)
某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:
上年度出险次数
0
1
2
3
4
5
保费
0.85a
a
1.25a
1.5a
1.75a
2a
设该险种一续保人一年内出险次数与相应概率如下:[]
一年内出险次数
0
1
2[]
3
4
5
概率
0.30
0.15
0.20
0.20
0.10
0. 05
(Ⅰ)求一续保人本年度的保费高于基本保费的概率;
(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;
(Ⅲ)求续保人本年度的平均保费与基本保费的比值.
19.(本小题满分12分)如图,菱形的对角线与交于点,,点分别在上,,交于点.将沿折到位置,.
(Ⅰ)证明:平面;
(Ⅱ)求二面角的正弦值.
20.(本小题满分12分)
已知椭圆的焦点在轴上,是的左顶点,斜率为的直线交于两点,点在上,.
(Ⅰ)当时,求的面积;
(Ⅱ)当时,求的取值范围.
(21)(本小题满分12分)
(Ⅰ)讨论函数的单调性,并证明当时,;
(Ⅱ)证明:当时,函数有最小值.设的最小值为,求函数的值域.
请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号
(22)(本小题满分10分)选修4-1:几何证明选讲
如图,在正方形中,分别在边上(不与端点重合),且,过点作,垂足为.
(Ⅰ) 证明:四点共圆;
(Ⅱ)若,为的中点,求四边形的
面积.
(23)(本小题满分10分)选修4—4:坐标系与参数方程
在直角坐标系中,圆的方程为.
(Ⅰ)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求的极坐标方程;
(Ⅱ)直线的参数方程是(为参数), 与交于两点,,求的斜率.
(24)(本小题满分10分)选修4—5:不等式选讲
已知函数,为不等式的解集.
(Ⅰ)求;
(Ⅱ)证明:当时,.
2016年全国高考理科数学试题全国卷2
参考答案
(1)【解析】A
∴,,∴,故选A.
(2)【解析】C
,
∴,∴,
故选C.
(3)【解析】D
,
∵,∴
解得,
故选D.
(4)【解析】A
圆化为标准方程为:,
故圆心为,,解得,
故选A.
(5)【解析】B
有种走法,有种走法,由乘法原理知,共种走法
故选B.
【解析二】:由题意,小明从街道的E处出发到F处最短有条路,再从F处到G处最短共有条路,则小明到老年公寓可以选择的最短路径条数为条,故选B.
(6)【解析】C
几何体是圆锥与圆柱的组合体,
设圆柱底面圆半径为,周长为,圆锥母线长为,圆柱高为.
由图得,,由勾股定理得:,
,
故选C.
(7)【解析】B
由题意,将函数的图像向左平移个单位得,则平移后函数的对称轴为,即,故选B.
(8)【解析】C
第一次运算:,
第二次运算:,
第三次运算:,
故选C.
(9)【解析】D
∵,,
故选D.
解法二:对展开后直接平方
解法三:换元法
(10)【解析】C
由题意得:在如图所示方格中,而平方和小于1的点均在
如图所示的阴影中
由几何概型概率计算公式知,∴,故选C.
(11)【解析】A
离心率,由正弦定理得.
故选A.
(12)【解析】B
由得关于对称,
而也关于对称,
∴对于每一组对称点 ,
∴,故选B.
13.【解析】
∵,,
,,
,
由正弦定理得:解得.
(14)【解析】②③④
对于①,,则的位置关系无法确定,故错误;对于②,因为,所以过直线作平面与平面相交于直线,则,因为,故②正确;对于③,由两个平面平行的性质可知正确;对于④,由线面所成角的定义和等角定理可知其正确,故正确的有②③④.
(15)【解析】
由题意得:丙不拿(2,3),
若丙(1,2),则乙(2,3),甲(1,3)满足,
若丙(1,3),则乙(2,3),甲(1,2)不满足,
故甲(1,3),
(16)【解析】
的切线为:(设切点横坐标为)
的切线为:
∴
解得
∴.
17.【解析】⑴设的公差为,,
∴,∴,∴.
∴,,.
⑵记的前项和为,则
.
当时,;
当时,;
当时,;
当时,.
∴.
18.⑴设续保人本年度的保费高于基本保费为事件,
.
⑵设续保人保费比基本保费高出为事件,
.
⑶解:设本年度所交保费为随机变量.
平均保费
,
∴平均保费与基本保费比值为.
19.【解析】⑴证明:∵,
∴,
∴.
∵四边形为菱形,
∴,
∴,
∴,
∴.
∵,
∴;
又,,
∴,
∴,
∴,
∴,
∴.
又∵,
∴面.
⑵建立如图坐标系.
,,,,
,,,
设面法向量,
由得,取,
∴.
同理可得面的法向量,
∴,
∴
20.【解析】 ⑴当时,椭圆E的方程为,A点坐标为,
则直线AM的方程为.
联立并整理得,
解得或,则
因为,所以
因为,,
所以,整理得,
无实根,所以.
所以的面积为.
⑵直线AM的方程为,
联立并整理得,
解得或,
所以
所以
因为
所以,整理得,.
因为椭圆E的焦点在x轴,所以,即,整理得
解得.
(21)【解析】⑴证明:
∵当时,
∴在上单调递增
∴时,
∴
⑵
由(1)知,当时,的值域为,只有一解.
使得,
当时,单调减;当时,单调增
记,在时,,∴单调递增
∴.
(22)【解析】(Ⅰ)证明:∵
∴
∴
∵,
∴
∴
∴
∴
∴.
∴B,C,G,F四点共圆.
(Ⅱ)∵E为AD中点,,
∴,
∴在中,,
连接,,
∴.
(23)解:⑴整理圆的方程得,
由可知圆的极坐标方程为.
⑵记直线的斜率为,则直线的方程为,
由垂径定理及点到直线距离公式知:,
即,整理得,则.
(24)【解析】解:⑴当时,,若;
当时,恒成立;
当时,,若,.
综上可得,.
⑵当时,有,
即,
则,
则,
即,
证毕.