- 143.34 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第十四章 导数及其应用
京翰提示:以下内容主要列举了高三数学导数部分的相关知识点及典型例题解析,以课本内容为基础,分课时的对导数部分进行复习和总结,从而对导数有了更加透彻的认识和了解
第1课时 变化率与导数、导数的计算
1.导数的概念:函数y=的导数,就是当Δ0时,函数的增量Δy与自变量的增量Δ的比的,即==.
2.导函数:函数y=在区间(a, b)内的导数都存在,就说在区间( a, b )内,
其导数也是(a ,b )内的函数,叫做的,记作或,
函数的导函数在时的函数值,就是在处的导数.
3.导数的几何意义:设函数y=在点处可导,那么它在该点的导数等于函数所表示曲线在相应点处的.
4.求导数的方法
(1) 八个基本求导公式
=; =;(n∈Q) =, =
=, == , =
(2) 导数的四则运算
==
= ,=
(3) 复合函数的导数
设在点x处可导,在点处可导,则复合函数在点x处可导, 且=,即.
典型例题
例1.求函数y=在x0到x0+Δx之间的平均变化率.
解 ∵Δy=
变式训练1. 求y=在x=x0处的导数.
解
例2. 求下列各函数的导数:
(1) (2)
(3) (4)
解 (1)∵ ∴y′
(2)y=(x2+3x+2)(x+3)=x3+6x2+11x+6,∴y′=3x2+12x+11.
(3)∵y=∴
(4) ,∴
变式训练2:求y=tanx的导数.解y′
例3. 已知曲线y=(1)求曲线在x=2处的切线方程;
(2)求曲线过点(2,4)的切线方程.
解 (1)∵y′=x2,∴在点P(2,4)处的切线的斜率k=|x=2=4.
∴曲线在点P(2,4)处的切线方程为y-4=4(x-2),即4x-y-4=0.
(2)设曲线y=与过点P(2,4)的切线相切于点,则切线的斜率k=|=.
∴切线方程为即
∵点P(2,4)在切线上,∴4=即∴
∴(x0+1)(x0-2)2=0,解得x0=-1或x0=2,故所求的切线方程为4x-y-4=0或x-y+2=0.
变式训练3:若直线y=kx与曲线y=x3-3x2+2x相切,则k=. 答案2或
例4. 设函数 (a,b∈Z),曲线在点处的切线方程为y=3.
(1)求的解析式;
(2)证明:曲线上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,并求出此定值.
(1)解,于是解得或
因为a,bZ,故
(2)证明 在曲线上任取一点.由知,
过此点的切线方程为.
令x=1,得,切线与直线x=1交点为.
令y=x,得,切线与直线y=x的交点为.
直线x=1与直线y=x的交点为(1,1).
从而所围三角形的面积为.所以,所围三角形的面积为定值2.
变式训练4:偶函数f(x)=ax4+bx3+cx2+dx+e的图象过点P(0,1),且在x=1处的切线方程为y=x-2,求y=f(x)的解析式.
解 ∵f(x)的图象过点P(0,1),∴e=1. ①
又∵f(x)为偶函数,∴f(-x)=f(x).
故ax4+bx3+cx2+dx+e=ax4-bx3+cx2-dx+e.
∴b=0,d=0. ②
∴f(x)=ax4+cx2+1.
∵函数f(x)在x=1处的切线方程为y=x-2,∴可得切点为(1,-1).
∴a+c+1=-1. ③
∵=(4ax3+2cx)|x=1=4a+2c,∴4a+2c=1. ④
由③④得a=,c=.∴函数y=f(x)的解析式为
第2课时 导数的概念及性质
1.函数的单调性
⑴ 函数y=在某个区间内可导,若>0,则为;若<0,则为 .
(逆命题不成立)
(2) 如果在某个区间内恒有,则.
注:连续函数在开区间和与之相应的闭区间上的单调性是一致的.
(3) 求可导函数单调区间的一般步骤和方法:
① 确定函数的;
② 求,令,解此方程,求出它在定义区间内的一切实根;
③ 把函数的间断点(即的无定义点)的横坐标和上面的各个实根按由小到大的顺序排列起来,
然后用这些点把函数的定义区间分成若干个小区间;
④ 确定在各小开区间内的,根据的符号判定函数在各个相应小开区间内的增减性.
2.可导函数的极值
⑴ 极值的概念: 设函数在点附近有定义,且对附近的所有点都有(或),
则称为函数的一个极大(小)值.称为极大(小)值点.
⑵ 求可导函数极值的步骤:
① 求导数;
② 求方程=0的;
③ 检验在方程=0的根左右的符号,
如果在根的左侧附近为正,右侧附近为负,那么函数y=在这个根处取得;
如果在根的左侧附近为负,右侧为正,那么函数y=在这个根处取得.
3.函数的最大值与最小值:
⑴ 设y=是定义在区间[a ,b ]上的函数,y=在(a ,b )内有导数,
则函数y=在[a ,b ]上有最大值与最小值;但在开区间内有最大值与最小值.
(2) 求最值可分两步进行:
① 求y=在(a ,b )内的值;
② 将y=的各值与、比较,其中最大的一个为最大值,最小的一个为最小值.
(3) 若函数y=在[a ,b ]上单调递增,则为函数的,为函数的;
若函数y=在[a ,b ]上单调递减,则为函数的,为函数的.
例1. 已知f(x)=ex-ax-1.
(1)求f(x)的单调增区间;
(2)若f(x)在定义域R内单调递增,求a的取值范围;
(3)是否存在a,使f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a的值;若不存在,说明理由.
解:=ex-a.
(1)若a≤0,=ex-a≥0恒成立,即f(x)在R上递增.
若a>0,ex-a≥0,∴ex≥a,x≥lna.∴f(x)的单调递增区间为(lna,+∞).
(2)∵f(x)在R内单调递增,∴≥0在R上恒成立.∴ex-a≥0,即a≤ex在R上恒成立.
∴a≤(ex)min,又∵ex>0,∴a≤0.
(3)方法一 由题意知ex-a≤0在(-∞,0]上恒成立.
∴a≥ex在(-∞,0]上恒成立.∵ex在(-∞,0]上为增函数.
∴x=0时,ex最大为1.∴a≥1.同理可知ex-a≥0在[0,+∞)上恒成立.
∴a≤ex在[0,+∞)上恒成立.∴a≤1,∴a=1.
方法二 由题意知,x=0为f(x)的极小值点.∴=0,即e0-a=0,∴a=1.
变式训练1. 已知函数f(x)=x3-ax-1.
(1)若f(x)在实数集R上单调递增,求实数a的取值范围;
(2)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a的取值范围;若不存在,说明理由;
(3)证明:f(x)=x3-ax-1的图象不可能总在直线y=a的上方.
(1)解 由已知=3x2-a,∵f(x)在(-∞,+∞)上是单调增函数,
∴=3x2-a≥0在(-∞,+∞)上恒成立,即a≤3x2对x∈R恒成立.
∵3x2≥0,∴只需a≤0,又a=0时,=3x2≥0,故f(x)=x3-1在R上是增函数,则a≤0.
(2)解 由=3x2-a≤0在(-1,1)上恒成立,得a≥3x2,x∈(-1,1)恒成立.
∵-10,即e-ax(-ax2+2x)>0,得02时,f(x)在(1,2)上是减函数,∴f(x)max=f(1)=e-a.
②当1≤≤2,即1≤a≤2时,f(x)在上是增函数,在上是减函数,∴f(x)max=f=4a-2e-2.
③当>2时,即02时,f(x)的最大值为e-a.
变式训练3. 设函数f(x)=-x(x-a)2(x∈R),其中a∈R.
(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)当a≠0时,求函数f(x)的极大值和极小值.
解:(1)当a=1时,f(x)=-x(x-1)2=-x3+2x2-x,f(2)=-2,=-3x2+4x-1,-12+8-1=-5,
∴当a=1时,曲线y=f(x)在点(2,f(2))处的切线方程为5x+y-8=0.
(2)f(x)=-x(x-a)2=-x3+2ax2-a2x,=-3x2+4ax-a2=-(3x-a)(x-a),令=0,解得x=或x=a.
由于a≠0,以下分两种情况讨论.
①若a>0,当x变化时,的正负如下表:
x
(-∞,)
(,a)
a
(a,+∞)
-
0
+
0
-
f(x)
↘
↗
0
↘
因此,函数f(x)在x=处取得极小值f(),且f()=-
函数f(x)在x=a处取得极大值f(a),且f(a)=0.
②若a<0,当x变化时,的正负如下表:
x
(-∞,a)
a
(a,)
(,+∞)
-
0
+
0
-
f(x)
↘
0
↗
-
↘
因此,函数f(x)在x=a处取得极小值f(a),且f(a)=0;函数f(x)在x=处取得极大值f(),且f()=-.
例4. 某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a元(3≤a≤5)的管理费,预计当每件产品的售价为x元(9≤x≤11)时,一年的销售量为(12-x)2万件.
(1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;
(2)当每件产品的售价为多少元时,分公司一年的利润L最大,并求出L的最大值Q(a).
解 (1)分公司一年的利润L(万元)与售价x的函数关系式为:L=(x-3-a)(12-x)2,x∈[9,11].
(2) =(12-x)2-2(x-3-a)(12-x)=(12-x)(18+2a-3x).令=0得x=6+a或x=12(不合题意,舍去).
∵3≤a≤5,∴8≤6+a≤.在x=6+a两侧L′的值由正变负.
所以①当8≤6+a<9即3≤a<时,Lmax=L(9)=(9-3-a)(12-9)2=9(6-a).
②当9≤6+a≤,即≤a≤5时,Lmax=L(6+a)=(6+a-3-a)[12-(6+a)]2=4(3-a)3.
所以
答 若3≤a<,则当每件售价为9元时,分公司一年的利润L最大,最大值Q(a)=9(6-a)(万元);
若≤a≤5,则当每件售价为(6+a)元时,分公司一年的利润L最大,最大值Q(a)= (万元).
导数及其应用单元检测题
一、选择题
1.曲线y=ex在点(2,e2)处的切线与坐标轴所围三角形的面积为( )
A.e2B.2e2 C.e2 D.
2.如果函数y=f(x)的图象如图所示,那么导函数y=的图象可能是 ( )
3.设f(x)=x2(2-x),则f(x)的单调增区间是( )
A.(0, B.(+∞) C.(-∞,0) D.(-∞,0)∪(,+∞)
4.设a∈R,若函数y=ex+ax,x∈R有大于零的极值点,则 ( )
A.a<-1B.a>-1C.a<-D.a>-
5.已知函数y=f(x)=x3+px2+qx的图象与x轴切于非原点的一点,且y极小值=-4,那么p、q的值分别为( )
A.6,9B.9,6 C.4,2 D.8,6
6.已知x≥0,y≥0,x+3y=9,则x2y的最大值为( )
A.36 B.18 C.25 D.42
7.下列关于函数f(x)=(2x-x2)ex的判断正确的是( )
①f(x)>0的解集是{x|00D.b<
二、填空题
13.若f(x)=x3+3ax2+3(a+2)x+1没有极值,则a的取值范围为.
14.如图是y=f(x)导数的图象,对于下列四个判断:
①f(x)在[-2,-1]上是增函数;
②x=-1是f(x)的极小值点;
③f(x)在[-1,2]上是增函数,在[2,4]上是减函数;
④x=3是f(x)的极小值点.其中判断正确的是.
15.函数f(x)的导函数y=的图象如右图,则函数f(x)的单调递增区间为.
16.已知函数f(x)的导函数为,且满足f(x)=3x2+2x,则=.
三、解答题
17.已知函数f(x)=x3-x2+bx+c.
(1)若f(x)在(-∞,+∞)上是增函数,求b的取值范围;
(2)若f(x)在x=1处取得极值,且x∈[-1,2]时,f(x)2或c<-1,所以c的取值范围为(-∞,-1)∪(2,+∞).
18.解 命题p:由原式得f(x)=x3-ax2-4x+4a,
∴=3x2-2ax-4,y′的图象为开口向上且过点(0,-4)的抛物线.
由条件得≥0且≥0,即∴-2≤a≤2.
命题q:∵该不等式的解集为R,∴a<-1.
当p正确q不正确时,-1≤a≤2;当p不正确q正确时,a<-2.∴a的取值范围是(-∞,-2)∪[-1,2].
19.解 f(x)=x(x-1)(x-a)=x3-(a+1)x2+ax∴=3x2-2(a+1)x+a
要使函数f(x)=x(x-1)(x-a)在(2,+∞)上是增函数,只需=3x2-2(a+1)x+a在(2,+∞)上满足≥0
即可.∵=3x2-2(a+1)x+a的对称轴是x=,∴a的取值应满足:或
解得:a≤.∴a的取值范围是a≤.
20.解 (1)∵函数F(x)=f(x)-3x2是奇函数,∴F(-x)=-F(x),化简计算得b=3.
∵函数f(x)在x=-1处取极值,∴=0.f(x)=-2x3+3x2+cx, =-6x2+6x+c
∴=-6-6+c=0,c=12.∴f(x)=-2x3+3x2+12x,
(2)=-6x2+6x+12=-6(x2-x-2).令=0,得x1=-1,x2=2,
x
-3
(-3,-1)
-1
(-1,2)
2
(2,3)
3
-
0
+
0
-
f(x)
45
↘
-7
↗
20
↘
9
∴函数f(x)在[-3,-1]和[2,3]上是减函数,
函数f(x)在[-1,2]上是增函数.
选校网www.xuanxiao.com高考频道专业大全历年分数线上万张大学图片大学视频院校库 (按ctrl 点击打开)