- 141.95 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第2讲 等差数列及其前n项和
最新考纲 1.理解等差数列的概念;2.掌握等差数列的通项公式与前n项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题;4.了解等差数列与一次函数的关系.
知 识 梳 理
1.等差数列的概念
(1)如果一个数列从第2项起,每一项与前一项的差是同一个常数,那么这个数列就为等差数列,这个常数为等差数列的公差,公差通常用字母d表示.
数学语言表达式:an+1-an=d(n∈N+,d为常数),或an-an-1=d(n≥2,d为常数).
(2)如果在a与b中间插入一个数A,使a,A,b成等差数列,那么A叫作a与b的等差中项,即A=.
2.等差数列的通项公式与前n项和公式
(1)若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d.
通项公式的推广:an=am+(n-m)d(m,n∈N+).
(2)等差数列的前n项和公式
Sn==na1+d(其中n∈N+,a1为首项,d为公差,an为第n项).
3.等差数列的有关性质
已知数列{an}是等差数列,Sn是{an}的前n项和.
(1)若m+n=p+q(m,n,p,q∈N+),则有am+an=ap+aq.
(2)等差数列{an}的单调性:当d>0时,{an}是递增数列;当d<0时,{an}是递减数列;当d=0时,{an}是常数列.
(3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N+)是公差为md的等差数列.
(4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.
4.等差数列的前n项和公式与函数的关系
Sn=n2+n.
数列{an}是等差数列⇔Sn=An2+Bn(A,B为常数).
5.等差数列的前n项和的最值
在等差数列{an}中,a1>0,d<0,则Sn存在最大值;若a1<0,d>0,则Sn存在最小值.
诊 断 自 测
1.判断正误(在括号内打“√”或“×”) 精彩PPT展示
(1)数列{an}为等差数列的充要条件是对任意n∈N+,都有2an+1=an+an+2.( )
(2)等差数列{an}的单调性是由公差d决定的.( )
(3)已知数列{an}的通项公式是an=pn+q(其中p,q为常数),则数列{an}一定是等差数列.( )
(4)数列{an}为等差数列的充要条件是其通项公式为n的一次函数.( )
(5)等差数列的前n项和公式是常数项为0的二次函数.( )
解析 (4)若公差d=0,则通项公式不是n的一次函数.
(5)若公差d=0,则前n项和不是二次函数.
答案 (1)√ (2)√ (3)√ (4)× (5)×
2.(2015·重庆卷)在等差数列{an}中,若a2=4,a4=2,则a6等于( )
A.-1 B.0
C.1 D.6
解析 由等差数列的性质,得a6=2a4-a2=2×2-4=0,选B.
答案 B
3.(2017·长沙模拟)设等差数列{an}的前n项和为Sn,若S3=2a3,S5=15,则a2 016=________.
解析 在等差数列{an}中,由S3=2a3知,3a2=2a3,而S5=15,则a3=3,于是a2=2,从而其公差为1,首项为1,因此an=n,故a2 016=2 016.
答案 2 016
4.在等差数列{an}中,a1=7,公差为d,前n项和为Sn,当且仅当n=8时Sn取得最大值,则d的取值范围为______.
解析 由题意知d<0且即
解得-1<d<-.
答案
5.(必修5P19A5改编)在等差数列{an}中,若a3+a4+a5+a6+a7=450,则a2+a8=________.
解析 由等差数列的性质,得a3+a4+a5+a6+a7=5a5=450,∴a5=90,∴a2+a8=2a5=180.
答案 180
考点一 等差数列基本量的运算
【例1】 (1)(2016·全国Ⅰ卷)已知等差数列{an}前9项的和为27,a10=8,则a100=( )
A.100 B.99 C.98 D.97
(2)(2017·西安模拟)设等差数列{an}的前n项和为Sn,S3=6,S4=12,则S6=________.
解析 (1)设等差数列{an}的公差为d,由已知,得所以所以a100=a1+99d=-1+99=98.
(2)法一 设数列{an}的首项为a1,公差为d,由S3=6,
S4=12,可得解得
即S6=6a1+15d=30.
法二 由{an}为等差数列,故可设前n项和Sn=An2+Bn,
由S3=6,S4=12可得
解得即Sn=n2-n,则S6=36-6=30.
答案 (1)C (2)30
规律方法 (1)等差数列的通项公式及前n项和公式共涉及五个量a1,an,d,n,Sn,知其中三个就能求另外两个,体现了用方程的思想来解决问题.
(2)数列的通项公式和前n项和公式在解题中起到变量代换作用,而a1和d是等差数列的两个基本量,用它们表示已知和未知是常用方法.
【训练1】 (2015·全国Ⅰ卷)已知{an}是公差为1的等差数列,Sn为{an}的前n项和.若S8=4S4,则a10等于( )
A. B.
C.10 D.12
解析 由S8=4S4,得8a1+×1=4×,解得a1=,∴a10=a1+9d=,故选B.
答案 B
考点二 等差数列的判定与证明(典例迁移)
【例2】 (经典母题)若数列{an}的前n项和为Sn,且满足an+2SnSn-1=0(n≥2),a1=.
(1)求证:成等差数列;
(2)求数列{an}的通项公式.
(1)证明 当n≥2时,由an+2SnSn-1=0,
得Sn-Sn-1=-2SnSn-1,所以-=2,
又==2,故是首项为2,公差为2的等差数列.
(2)解 由(1)可得=2n,∴Sn=.
当n≥2时,
an=Sn-Sn-1=-==-.
当n=1时,a1=不适合上式.
故an=
【迁移探究1】 将本例条件“an+2SnSn-1=0(n≥2),a1=”改为“Sn(Sn-an)+2an=0(n≥2),a1=2”,问题不变,试求解.
(1)证明 当n≥2时,an=Sn-Sn-1且Sn(Sn-an)+2an=0.
∴Sn[Sn-(Sn-Sn-1)]+2(Sn-Sn-1)=0,
即SnSn-1+2(Sn-Sn-1)=0.
即-=.又==.
故数列是以首项为,公差为的等差数列.
(2)解 由(1)知=,∴Sn=,当n≥2时,
an=Sn-Sn-1=-
当n=1时,a1=2不适合上式,
故an=
【迁移探究2】 已知数列{an}满足2an-1-anan-1=1(n≥2),a1=2,证明数列是等差数列,并求数列{an}的通项公式.
解 当n≥2时,an=2-,
∴-=-=-=-==1(常数).
又=1.
∴数列是以首项为1,公差为1的等差数列.
∴=1+(n-1)×1,
∴an=.
规律方法 等差数列的四种判断方法:
(1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数.
(2)等差中项法:验证2an-1=an+an-2(n≥3,n∈N+)都成立.
(3)通项公式法:验证an=pn+q.
(4)前n项和公式法:验证Sn=An2+Bn.后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列,主要适合在选择题中简单判断.
考点三 等差数列的性质及应用
【例3】 (1)(2015·全国Ⅱ卷)设Sn是等差数列{an}的前n项和,若a1+a3+a5=3,则S5=( )
A.5 B.7 C.9 D.11
(2)(2016·南昌统考)设等差数列{an}的前n项和为Sn,若S3=9,S6=36,则a7+a8+a9等于( )
A.63 B.45 C.36 D.27
(3)已知Sn是等差数列{an}的前n项和,若a1=-2 014,-=6,则S2 017=________.
解析 (1)∵{an}为等差数列,∴a1+a5=2a3,得3a3=3,则a3=1,∴S5==5a3=5,故选A.
(2)由{an}是等差数列,得S3,S6-S3,S9-S6为等差数列.
即2(S6-S3)=S3+(S9-S6),
得到S9-S6=2S6-3S3=45,故选B.
(3)由等差数列的性质可得也为等差数列.
设其公差为d.则-=6d=6,∴d=1.
故=+2 016d=-2 014+2 016=2,
∴S2 017=2×2 017=4 034.
答案 (1)A (2)B (3)4 034
规律方法 等差数列的性质是解题的重要工具.
(1)在等差数列{an}中,数列 Sm,S2m-Sm,S3m-S2m也成等差数列.
(2)在等差数列{an}中,数列也成等差数列.
【训练3】 (1)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为( )
A.13 B.12 C.11 D.10
(2)(2015·广东卷)在等差数列{an}中,若a3+a4+a5+a6+a7=25,则a2+a8=________.
解析 (1)因为a1+a2+a3=34,an-2+an-1+an=146,
a1+a2+a3+an-2+an-1+an=34+146=180,
又因为a1+an=a2+an-1=a3+an-2,
所以3(a1+an)=180,从而a1+an=60,
所以Sn===390,即n=13.
(2)因为{an}是等差数列,所以a3+a7=a4+a6=a2+a8=2a5,a3+a4+a5+a6+a7=5a5=25,即a5=5,a2+a8=2a5=10.
答案 (1)A (2)10
考点四 等差数列前n项和及其最值
【例4】 (1)(2017·衡水月考)等差数列{an}的前n项和为Sn,已知a1=13,S3=S11,当Sn最大时,n的值是( )
A.5 B.6 C.7 D.8
(2)设数列{an}的通项公式为an=2n-10(n∈N+),则|a1|+|a2|+…+|a15|=________.
解析 (1)法一 由S3=S11,得a4+a5+…+a11=0,根据等差数列的性质,可得a7+a8=0.根据首项等于13可推知这个数列递减,从而得到a7>0,a8<0,故n=7时Sn最大.
法二 由S3=S11,可得3a1+3d=11a1+55d,把a1=13代入,得d=-2,故Sn=13n-n(n-1)=-n2+14n.根据二次函数的性质,知当n=7时Sn最大.
法三 根据a1=13,S3=S11,知这个数列的公差不等于零,且这个数列的和是先递增后递减.根据公差不为零的等差数列的前n项和是关于n的二次函数,以及二次函数图像的对称性,可得只有当n==7时,Sn取得最大值.
(2)由an=2n-10(n∈N+)知{an}是以-8为首项,2为公差的等差数列,又由an=2n-10≥0得n≥5,∴n≤5时,an≤0,当n>5时,an>0,∴|a1|+|a2|+…+|a15|=-(a1+a2+a3+a4)+(a5+a6+…+a15)=20+100=130.
答案 (1)C (2)130
规律方法 求等差数列前n项和的最值,常用的方法:(1)利用等差数列的单调性,求出其正负转折项;
(2)利用性质求出其正负转折项,便可求得和的最值;
(3)将等差数列的前n项和Sn=An2+Bn(A,B为常数)看作二次函数,根据二次函数的性质求最值.
【训练4】 (2017·长春质量检测)设等差数列{an}的前n项和为Sn,a1>0且=,则当Sn取最大值时,n的值为( )
A.9 B.10
C.11 D.12
解析 由=,得S11=S9,即a10+a11=0,根据首项a1>0可推知这个数列递减,从而a10>0,a11<0,故n=10时,Sn最大.
答案 B
[思想方法]
1.在解有关等差数列的基本量问题时,可通过列关于a1,d的方程组进行求解.
2.证明等差数列要用定义;另外还可以用等差中项法,通项公式法,前n项和公式法判定一个数列是否为等差数列.
3.等差数列性质灵活使用,可以大大减少运算量.
[易错防范]
1.用定义法证明等差数列应注意“从第2项起”,如证明了an+1-an=d(n≥2)时,应注意验证a2-a1是否等于d,若a2-a1≠d,则数列{an}不为等差数列.
2.利用二次函数性质求等差数列前n项和最值时,一定要注意自变量n是正整数.
基础巩固题组
(建议用时:40分钟)
一、选择题
1.(2017·汉中调研)已知数列{an}是等差数列,a1+a7=-8,a2=2,则数列{an}的公差d等于( )
A.-1 B.-2 C.-3 D.-4
解析 法一 由题意可得
解得a1=5,d=-3.
法二 a1+a7=2a4=-8,∴a4=-4,
∴a4-a2=-4-2=2d,∴d=-3.
答案 C
2.已知等差数列{an}的公差为2,项数是偶数,所有奇数项之和为15,所有偶数项之和为25,则这个数列的项数为( )
A.10 B.20 C.30 D.40
解析 设项数为2n ,则由S偶-S奇=nd得,25-15=2n解得n=5,故这个数列的项数为10.
答案 A
3.已知等差数列{an}满足a1+a2+a3+…+a101=0,则有( )
A.a1+a101>0 B.a2+a100<0
C.a3+a99=0 D.a51=51
解析 由题意,得a1+a2+a3+…+a101=×101=0.所以a1+a101=a2+a100=a3+a99=0.
答案 C
4.设数列{an},{bn}都是等差数列,且a1=25,b1=75,a2+b2=100,则a37+b37等于( )
A.0 B.37 C.100 D.-37
解析 设{an},{bn}的公差分别为d1,d2,则(an+1+bn+1)-(an+bn)=(an+1-an)+(bn+1-bn)=d1+d2,
∴{an+bn}为等差数列,又a1+b1=a2+b2=100,
∴{an+bn}为常数列,∴a37+b37=100.
答案 C
5.(2017·泰安模拟)设等差数列{an}的前n项和为Sn,若a2=-11,a5+a9=-2,则当Sn取最小值时,n=( )
A.9 B.8 C.7 D.6
解析 设等差数列{an}的首项为a1,公差为d,由得
解得
∴an=-15+2n.
由an=-15+2n≤0,解得n≤.又n为正整数,
∴当Sn取最小值时,n=7.故选C.
答案 C
二、填空题
6.(2017·南昌模拟)已知每项均大于零的数列{an}中,首项a1=1且前n项和Sn满足Sn-Sn-1=2(n∈N+且n≥2),则a61=________.
解析 由已知Sn-Sn-1=2可得,-=2,所以{}是以1为首项,2为公差的等差数列,故=2n-1,Sn=(2n-1)2,所以a61=S61-S60=1212-1192=480.
答案 480
7.正项数列{an}满足a1=1,a2=2,2a=a+a(n∈N+,n≥2),则a7=________.
解析 由2a=a+a(n∈N+,n≥2),可得数列{a}是等差数列,公差d=a-a=3,首项a=1,所以a=1+3(n-1)=3n-2,∴an=,∴a7=.
答案
8.设等差数列{an}的前n项和为Sn,若Sm-1=-2,Sm=0,Sm+1=3,则m=________.
解析 法一 由已知得,am=Sm-Sm-1=2,am+1=Sm+1-Sm=3,因为数列{an}为等差数列,所以d=am+1-am=1,又因为Sm==0,所以m(a1+2)=0,因为m≠0,所以a1=-2,又am=a1+(m-1)d=2,解得m=5.
法二 因为Sm-1=-2,Sm=0,Sm+1=3,所以am=Sm-Sm-1=2,am+1=Sm+1-Sm=3,所以公差d=am+1-am=1,由Sn=na1+d=na1+,
得
由①得a1=,代入②可得m=5.
法三 因为数列{an}为等差数列,且前n项和为Sn,
所以数列也为等差数列.
所以+=,即+=0,
解得m=5,经检验为原方程的解.
答案 5
三、解答题
9.(2016·全国Ⅱ卷)等差数列{an}中,a3+a4=4,a5+a7=6.
(1)求{an}的通项公式;
(2)设bn=[an],求数列{bn}的前10项和,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2.
解 (1)设数列{an}首项为a1,公差为d,
由题意有解得
所以{an}的通项公式为an=.
(2)由(1)知,bn=.
当n=1,2,3时,1≤<2,bn=1;
当n=4,5时,2≤<3,bn=2;
当n=6,7,8时,3≤<4,bn=3;
当n=9,10时,4≤<5,bn=4.
所以数列{bn}的前10项和为1×3+2×2+3×3+4×2=24.
10.已知数列{an}的前n项和为Sn,a1=1,an≠0,anan+1=λSn-1,其中λ为常数.
(1)证明:an+2-an=λ;
(2)是否存在λ,使得{an}为等差数列?并说明理由.
(1)证明 由题设知,anan+1=λSn-1,an+1an+2=λSn+1-1.
两式相减得an+1(an+2-an)=λan+1.
由于an+1≠0,所以an+2-an=λ.
(2)解 由题设知,a1=1,a1a2=λS1-1,可得a2=λ-1.
由(1)知,a3=λ+1.
令2a2=a1+a3,解得λ=4.故an+2-an=4,
由此可得{a2n-1}是首项为1,公差为4的等差数列,a2n-1=4n-3;
{a2n}是首项为3,公差为4的等差数列,a2n=4n-1.
所以an=2n-1,an+1-an=2.
因此存在λ=4,使得数列{an}为等差数列.
能力提升题组
(建议用时:20分钟)
11.(2016·东北三省四市联考)《莱因德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的是较小的两份之和,则最小的一份为( )
A. B. C. D.
解析 依题意,设这100份面包所分成的五份由小到大依次为a-2m,a-m,a,a+m,a+2m,则有
解得a=20,m=,a-2m==,即其中最小一份为,故选A.
答案 A
12.(2017·郑州模拟)已知正项等差数列{an}的前n项和为Sn,若S12=24,则a6·a7的最大值为( )
A.36 B.6 C.4 D.2
解析 在等差数列{an}中,∵S12=6(a6+a7)=24,∴a6+a7=4,令x>0,y>0,由基本不等式可得x·y≤2,当且仅当x=y时“=”成立.又a6>0,a7>0,∴a6·a7≤2=4,当且仅当a6=a7=2时,“=”成立.即a6·a7的最大值为4,故选C.
答案 C
13.设等差数列{an},{bn}的前n项和分别为Sn,Tn,若对任意自然数n都有=,则+的值为________.
解析 ∵{an},{bn}为等差数列,
∴+=+==.
∵====,
∴=.
答案
14.在数列{an}中,a1=-5,a2=-2,记A(n)=a1+a2+…+an,B(n)=a2+a3+…+an+1,C(n)=a3+a4+…+an+2(n∈N+),若对于任意n∈N+,A(n),B(n),C(n)成等差数列.
(1)求数列{an}的通项公式;
(2)求数列{|an|}的前n项和.
解 (1)根据题意A(n),B(n),C(n)成等差数列.
∴A(n)+C(n)=2B(n),
整理得an+2-an+1=a2-a1=-2+5=3,
∴数列{an}是首项为-5,公差为3的等差数列,
∴an=-5+3(n-1)=3n-8.
(2)|an|=
记数列{|an|}的前n项和为Sn.
当n≤2时,Sn==-+n;
当n≥3时,Sn=7+=-n+14,
综上,Sn=
特别提醒:教师配赠习题、课件、视频、图片、文档等各种电子资源见《创新设计·高考总复习》光盘中内容.