• 167.55 KB
  • 2021-05-13 发布

2018版高考文科数学(北师大版)一轮文档讲义:章1-2命题及其关系

  • 14页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
第2讲 命题及其关系、充分条件与必要条件 最新考纲 1.理解命题的概念,了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系;2.理解必要条件、充分条件与充要条件的含义.‎ 知 识 梳 理 ‎1.四种命题及其相互关系 ‎(1)四种命题间的相互关系 ‎(2)四种命题的真假关系 ‎①两个命题互为逆否命题,它们具有相同的真假性.‎ ‎②两个命题为互逆命题或互否命题时,它们的真假性没有关系.‎ ‎2.充分条件、必要条件与充要条件的概念 若p⇒q,则p是q的充分条件,q是p的必要条件 p是q的充分不必要条件 p⇒q且q⇒/ p p是q的必要不充分条件 p⇒/ q且q⇒p p是q的充要条件 p⇔q p是q的既不充分也不必要条件 p⇒/ q且q⇒/ p 诊 断 自 测 ‎1.判断正误(在括号内打“√”或“×”) 精彩PPT展示 ‎(1)“x2+2x-3<0”是命题.(  )‎ ‎(2)命题“若p,则q”的否命题是“若p,则綈q”.(  )‎ ‎(3)当q是p的必要条件时,p是q的充分条件.(  )‎ ‎(4)“若p不成立,则q不成立”等价于“若q成立,则p成立”.(  )‎ 解析 (1)错误.该语句不能判断真假,故该说法是错误的.‎ ‎(2)错误.否命题既否定条件,又否定结论.‎ 答案 (1)× (2)× (3)√ (4)√‎ ‎2.(教材改编)命题“若α=,则tan α=1”的逆否命题是(  )                  ‎ A.若α≠,则tan α≠1 B.若α=,则tan α≠1‎ C.若tan α≠1,则α≠ D.若tan α≠1,则α= 解析 命题“若p,则q”的逆否命题是“若綈q,则綈p”,显然綈q:tan α≠1,綈p:α≠,所以该命题的逆否命题是“若tan α≠1,则α≠”.‎ 答案 C ‎3.(2016·天津卷)设x>0,y∈R,则“x>y”是“x>|y|”的(  )‎ A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 解析 x>yx>|y|(如x=1,y=-2).‎ 但x>|y|时,能有x>y.‎ ‎∴“x>y”是“x>|y|”的必要不充分条件.‎ 答案 C ‎4.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中假命题的个数为(  )‎ A.1 B.2 C.3 D.4‎ 解析 原命题正确,从而其逆否命题也正确;其逆命题为“若a>-6,则a>-3”是假命题,从而其否命题也是假命题.因此四个命题中有2个假命题.‎ 答案 B ‎5.(2017·咸阳双基检测)已知函数f(x)的定义域为R,则命题p:“函数f(x)为偶函数”是命题q:“存在x0∈R,f(x0)=f(-x0)”的(  )‎ A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析 若f(x)为偶函数,则有f(x)=f(-x),所以p⇒q;若f(x)=x,当x=0时,f(0)=f(-0),而f(x)=x为奇函数,所以p.∴“命题p”是“命题q”的充分不必要条件.‎ 答案 A 考点一 四种命题的关系及其真假判断                  ‎ ‎【例1】 (1)命题“若x2-3x-4=0,则x=4”的逆否命题及其真假性为(  )‎ A.“若x=4,则x2-3x-4=0”为真命题 B.“若x≠4,则x2-3x-4≠0”为真命题 C.“若x≠4,则x2-3x-4≠0”为假命题 D.“若x=4,则x2-3x-4=0”为假命题 ‎(2)原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题、否命题、逆否命题真假性的判断依次如下,正确的是(  )‎ A.真、假、真 B.假、假、真 C.真、真、假 D.假、假、假 解析 (1)根据逆否命题的定义可以排除A,D;由x2-3x-4=0,得x=4或-1,所以原命题为假命题,所以其逆否命题也是假命题.‎ ‎(2)由共轭复数的性质,|z1|=|z2|,∴原命题为真,因此其逆否命题为真;取z1=1,z2=i,满足|z1|=|z2|,但是z1,z2不互为共轭复数,∴其逆命题为假,故其否命题也为假.‎ 答案 (1)C (2)B 规律方法 (1)由原命题写出其他三种命题,关键要分清原命题的条件和结论,如果命题不是“若p,则q”的形式,应先改写成“若p,则q”的形式;如果命题有大前提,写其他三种命题时需保留大前提不变.‎ ‎(2)判断一个命题为真命题,要给出推理证明;判断一个命题为假命题,只需举出反例.‎ ‎(3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.‎ ‎【训练1】 已知:命题“若函数f(x)=ex-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是(  )‎ A.否命题是“若函数f(x)=ex-mx在(0,+∞)上是减函数,则m>1”,是真命题 B.逆命题是“若m≤1,则函数f(x)=ex-mx在(0,+∞)上是增函数”,是假命题 C.逆否命题是“若m>1,则函数f(x)=ex-mx在(0,+∞)上是减函数”,是真命题 D.逆否命题是“若m>1,则函数f(x)=ex-mx在(0,+∞)上不是增函数”,是真命题 解析 由f(x)=ex-mx在(0,+∞)上是增函数,则f′(x)=ex-m≥0恒成立,∴m≤1.‎ 因此原命题是真命题,所以其逆否命题“若m>1,则函数f(x)=ex-mx在(0,+∞)上不是增函数”是真命题.‎ 答案 D 考点二 充分条件与必要条件的判定 ‎【例2】 (1)函数f(x)在x=x0处导数存在.若p:f′(x0)=0;q:x=x0是f(x)的极值点,则(  )‎ A.p是q的充分必要条件 B.p是q的充分条件,但不是q的必要条件 C.p是q的必要条件,但不是q的充分条件 D.p既不是q的充分要件,也不是q的必要条件 ‎(2)(2017·合肥一模)“a=1”是“直线ax+y+1=0与直线(a+2)x-3y-2=0垂直”的(  )‎ A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 解析 (1)由极值的定义,q⇒p,但q.例如f(x)=x3,在x=0处f′(0)=0,f(x)=x3是增函数,x=0不是函数f(x)=x3的极值点.‎ 因此p是q的必要不充分条件.‎ ‎(2)直线ax+y+1=0与直线(a+2)x-3y-2=0垂直的充要条件为a(a+2)+1×(-3)=0,解得a=1或-3,故“a=1”是“直线ax+y+1=0与直线(a+2)x-3y-2=0垂直”的充分不必要条件.‎ 答案 (1)C (2)B 规律方法 充要条件的三种判断方法 ‎(1)定义法:根据p⇒q,q⇒p进行判断.‎ ‎(2)集合法:根据使p,q成立的对象的集合之间的包含关系进行判断.‎ ‎(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy≠1”是“x≠1或y≠1”的何种条件,即可转化为判断“x=1且y=1”是“xy=1”的何种条件.‎ ‎【训练2】 (2016·山东卷)已知直线a,b分别在两个不同的平面α ,β内,则“直线a和直线b相交”是“平面α和平面β相交”的(  )‎ A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析 由题意知aα,bβ,若a,b相交,则a,b有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a,b的位置关系可能为平行、相交或异面.‎ 因此“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.‎ 答案 A 考点三 充分条件、必要条件的应用(典例迁移)‎ ‎【例3】 (经典母题)已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P是x∈S的必要条件,求m的取值范围.‎ 解 由x2-8x-20≤0,得 ‎-2≤x≤10,‎ ‎∴P={x|-2≤x≤10}.‎ ‎∵x∈P是x∈S的必要条件,‎ 则S⊆P.‎ ‎∴解得m≤3.‎ 又∵S为非空集合,∴1-m≤1+m,解得m≥0.‎ 综上,可知0≤m≤3时,x∈P是x∈S的必要条件.‎ ‎【迁移探究1】 本例条件不变,问是否存在实数m,使x∈P是x∈S的充要条件?‎ 解 由例题知P={x|-2≤x≤10}.‎ 若x∈P是x∈S的充要条件,则P=S,‎ ‎∴∴ 这样的m不存在.‎ ‎【迁移探究2】 本例条件不变,若綈P是綈S的必要不充分条件,求实数m的取值范围.‎ 解 由例题知P={x|-2≤x≤10}.‎ ‎∵綈P是綈S的必要不充分条件,∴P是S的充分不必要条件,‎ ‎∴P⇒S且SP.‎ ‎∴[-2,10][1-m,1+m].‎ ‎∴或 ‎∴m≥9,则m的取值范围是[9,+∞).‎ 规律方法 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:‎ ‎(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解;‎ ‎(2)要注意区间端点值的检验.‎ ‎【训练3】 ax2+2x+1=0只有负实根的充要条件是________.‎ 解析 当a=0时,原方程为一元一次方程2x+1=0,有一个负实根x=-.‎ 当a≠0时,原方程为一元二次方程,‎ 又ax2+2x+1=0只有负实根,‎ 所以有即0<a≤1.‎ 综上,方程只有负根的充要条件是0≤a≤1.‎ 答案 0≤a≤1‎ ‎[思想方法]‎ ‎1.写出一个命题的逆命题、否命题及逆否命题的关键是分清原命题的条件和结论,然后按定义来写;在判断原命题、逆命题、否命题以及逆否命题的真假时,要借助原命题与其逆否命题同真或同假,逆命题与否命题同真或同假来判定.‎ ‎2.充要条件的几种判断方法 ‎(1)定义法:直接判断若p则q、若q则p的真假.‎ ‎(2)等价法:即利用A⇒B与綈B⇒綈A;B⇒A与綈A⇒綈B;A⇔B与綈B⇔綈A的等价关系,对于条件或结论是否定形式的命题,一般运用等价法.‎ ‎(3)利用集合间的包含关系判断:设A={x|p(x)},B={x|q(x)};若A⊆B,则p是q的充分条件或q是p的必要条件;若AB,则p是q的充分不必要条件,若A=B,则p是q的充要条件.‎ ‎[易错防范]‎ ‎1.当一个命题有大前提而要写出其他三种命题时,必须保留大前提.‎ ‎2.判断命题的真假及写四种命题时,一定要明确命题的结构,可以先把命题改写成“若p,则q”的形式.‎ ‎3.判断条件之间的关系要注意条件之间关系的方向,正确理解“p的一个充分而不必要条件是q”等语言.‎ 基础巩固题组 ‎(建议用时:25分钟)                   ‎ 一、选择题 ‎1.(2015·山东卷)设m∈R, 命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是(  )‎ A.若方程x2+x-m=0有实根,则m>0‎ B.若方程x2+x-m=0有实根,则m≤0‎ C.若方程x2+x-m=0没有实根,则m>0‎ D.若方程x2+x-m=0没有实根,则m≤0‎ 解析 根据逆否命题的定义,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是“若方程x2+x-m=0没有实根,则m≤0”.‎ 答案 D ‎2.“x=1”是“x2-2x+1=0”的(  )‎ A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 解析 因为x2-2x+1=0有两个相等的实数根为x=1,所以“x=1”是“x2-2x+1=0”的充要条件.‎ 答案 A ‎3.设α,β是两个不同的平面,m是直线且mα,则“m∥β”是“α∥β”的(  )‎ A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 解析 mα,m∥β α∥β,但mα,α∥β⇒m∥β,∴“m∥β”是“α∥β ”‎ 的必要不充分条件.‎ 答案 B ‎4.(2017·安徽江南十校联考)“a=0”是“函数f(x)=sin x-+a为奇函数”的(  )‎ A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析 显然a=0时,f(x)=sin x-为奇函数;当f(x)为奇函数时,f(-x)+f(x)=0.‎ 又f(-x)+f(x)=sin(-x)-+a+sin x-+a=0.‎ 因此2a=0,故a=0.‎ 所以“a=0”是“函数f(x)为奇函数”的充要条件.‎ 答案 C ‎5.下列结论错误的是(  )‎ A.命题“若x2-3x-4=0,则x=4”的逆否命题为“若x≠4,则x2-3x-4≠0”‎ B.“x=4”是“x2-3x-4=0”的充分条件 C.命题“若m>0,则方程x2+x-m=0有实根”的逆命题为真命题 D.命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”‎ 解析 C项命题的逆命题为“若方程x2+x-m=0有实根,则m>0”.若方程有实根,则Δ=1+4m≥0,‎ 即m≥-,不能推出m>0.所以不是真命题.‎ 答案 C ‎6.设x∈R,则“1”是“ln a>ln b”的(  )‎ A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析 由ln a>ln b⇒a>b>0⇒>,故必要性成立.‎ 当a=1,b=0时,满足>,但ln b无意义,所以ln a>ln b不成立,故充分性不成立.‎ 答案 B 二、填空题 ‎9.“若a≤b,则ac2≤bc2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________.‎ 解析 其中原命题和逆否命题为真命题,逆命题和否命题为假命题.‎ 答案 2‎ ‎10.“sin α=cos α”是“cos 2α=0”的________条件.‎ 解析 cos 2α=0等价于cos2α-sin2α=0,‎ 即cos α=±sin α.‎ 由cos α=sin α得到cos 2α=0;反之不成立.‎ ‎∴“sin α=cos α”是“cos 2α=0”的充分不必要条件.‎ 答案 充分不必要 ‎11.已知命题p:a≤x≤a+1,命题q:x2-4x<0,若p是q的充分不必要条件,则a的取值范围是________.‎ 解析 令M={x|a≤x≤a+1},N={x|x2-4x<0}={x|0b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-21且y>1,q:实数x,y满足x+y>2,则p是q的(  )‎ A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析 若x>1且y>1,则x+y>2.所以p⇒q;反之x+y>2 x>1且y=1,例如x=3,y=0,所以p.‎ 因此p是q的充分不必要条件.‎ 答案 A ‎14.(2017·南昌十所省重点中学联考)已知m∈R,“函数y=2x+m-1有零点”是“函数y=logmx在(0,+∞)上为减函数”的(  )‎ A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析 由y=2x+m-1=0,得m=1-2x,则m<1.‎ 由于函数y=logmx在(0,+∞)上是减函数,‎ 所以00”是“x>1”的充分不必要条件;②命题:“任意x∈R,sin x≤1”的否定是“存在x0∈R,sin x0>1”;③“若x=,则tan x=1”的逆命题为真命题;④若f(x)是R上的奇函数,则f(log32)+f(log23)=0.‎ 解析 ①中“x2+x-2>0”是“x>1”的必要不充分条件,故①错误.‎ 对于②,命题:“任意x∈R,sin x≤1”的否定是“存在x0∈R,sin x0>1”,故②正确.‎ 对于③,“若x=,则tan x=1”的逆命题为“若tan x=1,则x=”,其为假命题,故③错误.‎ 对于④,若f(x)是R上的奇函数,则f(-x)+f(x)=0,∵log32=≠-log32,‎ ‎∴log32与log23不互为相反数,故④错误.‎ 答案 ②‎ 特别提醒:教师配赠习题、课件、视频、图片、文档等各种电子资源见《创新设计·高考总复习》光盘中内容.‎

相关文档