- 376.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
专题对点练13 等差、等比数列与数列的通项及求和
1.已知各项都为正数的数列{an}满足a1=1,-(2an+1-1)·an-2an+1=0.
(1)求a2,a3;
(2)求{an}的通项公式.
2.(2018北京,文15)设{an}是等差数列,且a1=ln 2,a2+a3=5ln 2.
(1)求{an}的通项公式;
(2)求+…+.
3.(2018全国Ⅲ,文17)等比数列{an}中,a1=1,a5=4a3.
(1)求{an}的通项公式;
(2)记Sn为{an}的前n项和,若Sm=63,求m.
4.在等差数列{an}中,a2+a7=-23,a3+a8=-29.
(1)求数列{an}的通项公式;
(2)设数列{an+bn}是首项为1,公比为2的等比数列,求{bn}的前n项和Sn.
4
5.(2018天津,文18)设{an}是等差数列,其前n项和为Sn(n∈N*);{bn}是等比数列,公比大于0,其前n项和为Tn(n∈N*).已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6.
(1)求Sn和Tn;
(2)若Sn+(T1+T2+…+Tn)=an+4bn,求正整数n的值.
6.在等差数列{an}中,a7=8,a19=2a9.
(1)求{an}的通项公式;
(2)设bn=,求数列{bn}的前n项和Sn.
7.已知{an}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.
(1)求数列{an}的通项公式;
(2){bn}为各项非零的等差数列,其前n项和为Sn.已知S2n+1=bnbn+1,求数列的前n项和Tn.
8.已知数列{an}是等差数列,其前n项和为Sn,数列{bn}是公比大于0的等比数列,且b1=-2a1=2,a3-b2=-1,S3-2b3=7.
(1)求数列{an}和{bn}的通项公式;
(2)设cn=,求数列{cn}的前n项和Tn.
4
专题对点练13答案
1.解 (1)由题意得a2=,a3=.
(2)由-(2an+1-1)an-2an+1=0得2an+1(an+1)=an(an+1).
因为{an}的各项都为正数,所以.
故{an}是首项为1,公比为的等比数列,
因此an=.
2.解 (1)设等差数列{an}的公差为d,
∵a2+a3=5ln 2,
∴2a1+3d=5ln 2.
又a1=ln 2,∴d=ln 2.
∴an=a1+(n-1)d=nln 2.
(2)由(1)知an=nln 2.
∵=enln 2==2n,
∴{}是以2为首项,2为公比的等比数列.
∴+…+
=2+22+…+2n
=2n+1-2.
∴+…+=2n+1-2.
3.解 (1)设{an}的公比为q,
由题设得an=qn-1.
由已知得q4=4q2,
解得q=0(舍去),q=-2或q=2.
故an=(-2)n-1或an=2n-1.
(2)若an=(-2)n-1,则Sn=.由Sm=63得(-2)m=-188,此方程没有正整数解.
若an=2n-1,则Sn=2n-1.由Sm=63得2m=64,解得m=6.
综上,m=6.
4.解 (1)设等差数列{an}的公差是d.由已知(a3+a8)-(a2+a7)=2d=-6,解得d=-3,
∴a2+a7=2a1+7d=-23,解得a1=-1,
∴数列{an}的通项公式为an=-3n+2.
(2)由数列{an+bn}是首项为1,公比为2的等比数列,
∴an+bn=2n-1,
∴bn=2n-1-an=3n-2+2n-1,
∴Sn=[1+4+7+…+(3n-2)]+(1+2+22+…+2n-1)=+2n-1.
5.解 (1)设等比数列{bn}的公比为q.由b1=1,b3=b2+2,可得q2-q-2=0.因为q>0,可得q=2,故bn=2n-1.所以,Tn==2n-1.
设等差数列{an}的公差为d.由b4=a3+a5,可得a1+3d=4.由b5=a4+2a6,可得3a1+13d=16,从而a1=1,d=1,故an=n.所以,Sn=.
(2)由(1),有
T1+T2+…+Tn=(21+22+…+2n)-n=-n=2n+1-n-2.
由Sn+(T1+T2+…+Tn)=an+4bn可得,+2n+1-n-2=n+2n+1,
整理得n2-3n-4=0,解得n=-1(舍),或n=4.
所以,n的值为4.
6.解 (1)设等差数列{an}的公差为d,则an=a1+(n-1)d.
因为a7=8,所以a1+6d=8.
4
又a19=2a9,所以a1+18d=2(a1+8d),
解得a1=2,d=1,所以{an}的通项公式为an=n+1.
(2)bn=,
所以Sn=+…+.
7.解 (1)设{an}的公比为q,由题意知a1(1+q)=6,q=a1q2,
又an>0,解得a1=2,q=2,所以an=2n.
(2)由题意知S2n+1==(2n+1)bn+1,
又S2n+1=bnbn+1,bn+1≠0,所以bn=2n+1.
令cn=,则cn=,
因此Tn=c1+c2+…+cn
=+…+.
又Tn=+…+,两式相减得Tn=,
所以Tn=5-.
8.解 (1)设数列{an}的公差为d,数列{bn}的公比为q,q>0,
∵b1=-2a1=2,a3-b2=-1,S3-2b3=7,
∴a1=-1,-1+2d-2q=-1,3×(-1)+3d-2×2q2=7,解得d=2,q=2.
∴an=-1+2(n-1)=2n-3,bn=2n.
(2)cn=,
∴Tn=+…+,
Tn=-+…+,
∴Tn=-+…+(-1)n-1×=-,
∴Tn=-.
4