- 408.10 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第十五章 新增内容和创新题目
五、创新题目
【考题分类】
(一)选择题(共5 题)
1.(福建卷理10)对于具有相同定义域的函数和,若存在函数(为常数),对任给的正数,存在相应的,使得当且时,总有则称直线为曲线与的“分渐近线”。给出定义域均为D=的四组函数如下:
①,;②,;
③,;④,。
其中,曲线与存在“分渐近线”的是
A.①④ B.②③ C.②④ D.③④
【答案】C
【解析】要透过现象看本质,存在分渐近线的充要条件是时,。对于,当时便不符合,所以不存在;对于,肯定存在分渐近线,因为当时,;对于,,设且,所以当时越来愈大,从而会越来越小,不会趋近于0,所以不存在分渐近线;当时,,因此存在分渐近线。故,存在分渐近线的是选C
【命题意图】本题从大学数列极限定义的角度出发,仿造构造了分渐近线函数,目的是考查学生分析问题、解决问题的能力,考生需要抓住本质:存在分渐近线的充要条件是时,进行做答,是一道好题,思维灵活。
2.(广东卷文10)在集合{a,b,c,d}上定义两种运算和如下
那么d
A.a B.b C.c D.d
解:由上表可知:,故,选A。
3.(湖北卷理10文10)记实数,,……中的最大数为max,最小数为min。已知ABC的三边长位a,b,c(),定义它的亲倾斜度为
则“=1”是“ABC为等边三角形”的
A.必要而不充分的条件 B.充分而不必要的条件
C.充要条件 D.既不充分也不必要条件
【答案】A
【解析】若△ABC为等边三角形时,即a=b=c,则则l=1;若△ABC为等腰三角形,如a=2,b=2,c=3时,
则,此时l=1仍成立但△ABC不为等边三角形,所以A正确.
4.(山东卷理12文12)定义平面向量之间的一种运算“⊙”如下,对任意的a=(m,u),b=(p,q),另a⊙b=mq-np,下面的说法错误的是
(A)若a与b共线,则a⊙b=0
(B)a⊙b=b⊙a
(C)对任意的λ∈R,有(λa)⊙b=λ(a⊙b)
(D)(a⊙b)2+(a·b)2=|a|2 |b|2
【答案】B
【解析】若与共线,则有,故A正确;因为,而
,所以有,故选项B错误,故选B。
【命题意图】本题在平面向量的基础上,加以创新,属创新题型,考查平面向量的基础知识以及分析问题、解决问题的能力。
5.(浙江卷理10)设函数的集合,
平面上点的集合,则在同一直角坐标系中,中函数的图象恰好经过中两个点的函数的个数是
(A)4 (B)6 (C)8 (D)10
解析:当a=0,b=0;a=0,b=1;a=,b=0; a=,b=1;a=1,b=-1;a=1,b=1时满足题意,故答案选B,本题主要考察了函数的概念、定义域、值域、图像和对数函数的相关知识点,对数学素养有较高要求,体现了对能力的考察,属中档题
(二)填空题(共5题)
1.(福建卷文15)对于平面上的点集Ω,如果连接Ω中任意两点的线段必定包涵Ω,则称Ω为平面上的凸集,给出平面上4个点集的图形如下(阴影区域及其边界): 其中为凸集的是 (写出所有凸集相应图形的序号).
【答案】②③
【解析】根据题意,在①④中任取两点,连接起来,如下图,不符合题意。
2.(湖南卷理15)若数列满足:对任意的,只有有限个正整数使得成立,记这样的的个数为,则得到一个新数列.例如,若数列是,则数列是.已知对任意的,,则 , .
【答案】2,
【解析】因为,而,所以m=1,2,所以2.
所以=1, =4,=9,=16,
猜想
【命题意图】本题以数列为背景,通过新定义考察学生的自学能力、创新能力、探究能力,属难题。
3.(湖南卷文15)若规定E=的子集为E的第k个子集,其中k= ,则(1)是E的第____个子集;(2)E的第211个子集是_______
【答案】(1)是E的第___5_个子集;
(2)E的第211个子集是_______
4.(四川卷理16)设S为复数集C的非空子集.若对任意,都有,则称S为封闭集。下列命题:
①集合S={a+bi|为整数,为虚数单位}为封闭集;
②若S为封闭集,则一定有;
③封闭集一定是无限集;
④若S为封闭集,则满足的任意集合也是封闭集.
其中真命题是 (写出所有真命题的序号)
解析:直接验证可知①正确.
当S为封闭集时,因为x-y∈S,取x=y,得0∈S,②正确
对于集合S={0},显然满足素有条件,但S是有限集,③错误
取S={0},T={0,1},满足,但由于0-1=-1ÏT,故T不是封闭集,④错误
答案:①②
5.(四川卷文16)设S为复数集C的非空子集.若对任意,都有,则称S为封闭集。下列命题:w_w w. k#s5_u.c o*m
①集合S={a+b |为整数}为封闭集;
②若S为封闭集,则一定有;
③封闭集一定是无限集;
④若S为封闭集,则满足的任意集合也是封闭集.
其中真命题是 (写出所有真命题的序号)
解析:直接验证可知①正确.
当S为封闭集时,因为x-y∈S,取x=y,得0∈S,②正确
对于集合S={0},显然满足素有条件,但S是有限集,③错误
取S={0},T={0,1},满足,但由于0-1=-1ÏT,故T不是封闭集,④错误
答案:①②w_w w. k#s5_u.c o*m
(三)解答题(共6题)
1.(北京卷理20)已知集合对于,,定义A与B的差为A与B之间的距离为
(Ⅰ)证明:,且;
(Ⅱ)证明:三个数中至少有一个是偶数
(Ⅲ) 设P,P中有m(m≥2)个元素,记P中所有两元素间距离的平均值为(P).
证明:(P)≤.
证明:(I)设,,
因为,,所以, www.@ks@5u.com
从而
又
由题意知,,.
当时,;
当时,
所以
(II)设,,
,,.
记,由(I)可知
所以中1的个数为,的1的个数为。
设是使成立的的个数,则
由此可知,三个数不可能都是奇数,
即,,三个数中至少有一个是偶数。
(III),其中表示中所有两个元素间距离的总和,www.@ks@5u.com
设种所有元素的第个位置的数字中共有个1,个0则=
由于所以
从而
2. (北京卷文20)已知集合对于,,定义A与B的差为
A与B之间的距离为
(Ⅰ)当n=5时,设,求,;
(Ⅱ)证明:,且;
(Ⅲ) 证明:三个数中至少有一个是偶数
(Ⅰ)解:=(1,0,1,0,1)
设是使成立的的个数。则
3.(广东卷理21))设A(),B()是平面直角坐标系xOy上的两点,先定义由点A到点B的一种折线距离ρ(A,B)为ρ(A,B)=+.对于平面上给定的不同的两点A(),B()
若点C(x, y)是平面上的点,试证明ρ+ρρ;
在平面上是否存在点C(x, y),同时满足①ρ+ρ= ρ; ②ρ= ρ;若存在,请求所给出所有符合条件的点;若不存在,请予以证明。
解析:设A(),B()是平面直角坐标系xOy上的两点,先定义由点A到点B的一种折线距离p(A,B)为.
当且仅当时等号成立,即三点共线时等号成立.
(2)当点C(x, y) 同时满足①P+P= P,②P= P时,点是线段的中点. ,即存在点满足条件。
4.(江苏卷23)已知△ABC的三边长为有理数
(1)求证cosA是有理数
(2)对任意正整数n,求证cosnA也是有理数
[解析] 本题主要考查余弦定理、数学归纳法等基础知识,考查推理论证的能力与分析问题、解决问题的能力。满分10分。
(方法一)(1)证明:设三边长分别为,,∵是有理数,
是有理数,分母为正有理数,又有理数集对于除法的具有封闭性,
∴必为有理数,∴cosA是有理数。
(2)①当时,显然cosA是有理数;
当时,∵,因为cosA是有理数, ∴也是有理数;
②假设当时,结论成立,即coskA、均是有理数。
当时,,
,
,
解得:
∵cosA,,均是有理数,∴是有理数,
∴是有理数。 即当时,结论成立。
综上所述,对于任意正整数n,cosnA是有理数。
(方法二)证明:(1)由AB、BC、AC为有理数及余弦定理知
是有理数。
(2)用数学归纳法证明cosnA和都是有理数。
①当时,由(1)知是有理数,从而有也是有理数。
②假设当时,和都是有理数。
当时,由,
,
及①和归纳假设,知和都是有理数。
即当时,结论成立。
综合①、②可知,对任意正整数n,cosnA是有理数。
5.(上海卷理22)若实数、、满足,则称比远离.
(1)若比1远离0,求的取值范围;
(2)对任意两个不相等的正数、,证明:比远离;
(3)已知函数的定义域.任取,等于和中远离0的那个值.写出函数的解析式,并指出它的基本性质(结论不要求证明).
解析:(1) ;
(2) 对任意两个不相等的正数a、b,有,,
因为,
所以,即a3+b3比a2b+ab2远离;
(3) ,
性质:1°f(x)是偶函数,图像关于y轴对称,2°f(x)是周期函数,最小正周期,
3°函数f(x)在区间单调递增,在区间单调递减,kÎZ,
4°函数f(x)的值域为.
6.(上海卷文22)若实数、、满足,则称比接近.
(1)若比3接近0,求的取值范围;
(2)对任意两个不相等的正数、,证明:比接近;
(3)已知函数的定义域.任取,等于和中接近0的那个值.写出函数的解析式,并指出它的奇偶性、最小正周期、最小值和单调性(结论不要求证明).
解析:(1) xÎ(-2,2);
(2) 对任意两个不相等的正数a、b,有,,
因为,
所以,即a2b+ab2比a3+b3接近;
(3) ,kÎZ,
f(x)是偶函数,f(x)是周期函数,最小正周期T=p,函数f(x)的最小值为0,
函数f(x)在区间单调递增,在区间单调递减,kÎZ.