- 94.00 KB
- 2021-05-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
升级增分训练 简化解析几何运算的5个技巧
1.(2016·四川高考)设O为坐标原点,P是以F为焦点的抛物线y2=2px(p>0)上任意一点,M是线段PF上的点,且|PM|=2|MF|,则直线OM的斜率的最大值为( )
A. B.
C. D.1
解析:选C 如图所示,设P(x0,y0)(y0>0),
则y=2px0,
即x0=.
设M(x′,y′),
由=2,
得
化简可得
∴直线OM的斜率为k===≤=(当且仅当y0=p时取等号).
2.设双曲线+=1的一条渐近线为y=-2x,且一个焦点与抛物线y=x2的焦点相同,则此双曲线的方程为( )
A.x2-5y2=1 B.5y2-x2=1
C.5x2-y2=1 D.y2-5x2=1
解析:选D 因为x2=4y的焦点为(0,1),
所以双曲线的焦点在y轴上.
因为双曲线的一条渐近线为y=-2x,
所以设双曲线的方程为y2-4x2=λ(λ>0),
即-=1,
则λ+=1,λ=,
所以双曲线的方程为y2-5x2=1,故选D.
3.已知双曲线-=1(a>0,b>0)的左、右焦点分别为F1(-c,0),F2(c,0),P为双曲线上任一点,且·最小值的取值范围是,则该双曲线的离心率的取值范围为( )
A.(1,] B.[,2]
C.(0,] D.[2,+∞)
解析:选B 设P(x0,y0),
则·=(-c-x0,-y0)·(c-x0,-y0)
=x-c2+y=a2-c2+y,
上式当y0=0时取得最小值a2-c2,
根据已知-c2≤a2-c2≤-c2,
即c2≤a2≤c2,
即2≤≤4,
即≤≤2,
所以所求离心率的取值范围是[,2].
4.过抛物线y2=2px(p>0)的焦点F,斜率为的直线交抛物线于A,B两点,若=λ (λ>1),则λ的值为( )
A.5 B.4
C. D.
解析:选B 根据题意设A(x1,y1),B(x2,y2),
由=λ,
得=λ,
故-y1=λy2,即λ=-.
设直线AB的方程为y=,
联立直线与抛物线方程,
消元得y2-py-p2=0.
故y1+y2=p,y1y2=-p2,
=++2=-,
即-λ-+2=-.
又λ>1,解得λ=4.
5.(2015·四川高考)设直线l与抛物线y2=4x相交于A,B两点,与圆(x-5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点.若这样的直线l恰有4条,则r的取值范围是( )
A.(1,3) B.(1,4)
C.(2,3) D.(2,4)
解析:选D 设A,B,M,C(5,0)为圆心,当y1≠-y2时,kAB=,kCM=,由kAB·kCM=-1⇒y+y=24,所以M,又r2=|CM|2=4+2=10+y1y2,所以(2r2-20)2=yy,所以y,y是方程t2-24t+(2r2-20)2=0的两个不同的正根,由Δ>0得2<r<4.综上,r的取值范围是(2,4).
6.中心为原点,一个焦点为F(0,5)的椭圆,截直线y=3x-2所得弦中点的横坐标为,则该椭圆方程为( )
A.+=1 B.+=1
C.+=1 D.+=1
解析:选C 由已知得c=5,
设椭圆的方程为+=1,
联立
消去y得(10a2-450)x2-12(a2-50)x+4(a2-50)-a2(a2-50)=0,设直线y=3x-2与椭圆的交点坐标分别为(x1,y1),(x2,y2),
由根与系数关系得x1+x2=,
由题意知x1+x2=1,
即=1,
解得a2=75,
所以该椭圆方程为+=1.
7.已知双曲线C:-y2=1,点M的坐标为(0,1).设P是双曲线C上的点,Q是点P关于原点的对称点.记λ=·,则λ的取值范围是________.
解析:设P(x0,y0),则Q(-x0,-y0),
λ=·
=(x0,y0-1)·(-x0,-y0-1)
=-x-y+1
=-x+2.
因为|x0|≥,
所以λ的取值范围是(-∞,-1].
答案:(-∞,-1]
8.(2017·长春质检)已知AB为圆x2+y2=1的一条直径,点P为直线x-y+2=0上任意一点,则·的最小值为________.
解析:由题意,设A(cos θ,sin θ),P(x,x+2),
则B(-cos θ,-sin θ),
∴=(cos θ-x,sin θ-x-2),
(-cos θ-x,-sin θ-x-2),
∴·
=(cos θ-x)(-cos θ-x)+(sin θ-x-2)(-sin θ-x-2)
=x2+(x+2)2-cos2θ-sin2θ
=2x2+4x+3
=2(x+1)2+1,
当且仅当x=-1,
即P(-1,1)时,·取最小值1.
答案:1
9.设抛物线(t为参数,p>0)的焦点为F,准线为l.过抛物线上一点A作l的垂线,垂足为
B.设C,AF与BC相交于点E.若|CF|=2|AF|,且△ACE的面积为3,则p的值为________.
解析:由(p>0)消去t可得抛物线方程为y2=2px(p>0),∴F,|AB|=|AF|=|CF|=p,可得A(p,p).
易知△AEB∽△FEC,
∴==,
故S△ACE=S△ACF=×3p×p×=p2=3,
∴p2=6.∵p>0,∴p=.
答案:
10.(2016·河北三市二联)已知离心率为的椭圆+=1(a>b>0)的一个焦点为F,过F且与x轴垂直的直线与椭圆交于A,B两点,|AB|=.
(1)求此椭圆的方程;
(2)已知直线y=kx+2与椭圆交于C,D两点,若以线段CD为直径的圆过点E(-1,0),求k的值.
解:(1)设焦距为2c,
∵e==,a2=b2+c2,
∴=,由题意可知=,
∴b=1,a=,
∴椭圆的方程为+y2=1.
(2)将y=kx+2代入椭圆方程,
得(1+3k2)x2+12kx+9=0,
又直线与椭圆有两个交点,
所以Δ=(12k)2-36(1+3k2)>0,
解得k2>1.
设C(x1,y1),D(x2,y2),
则x1+x2=-,x1x2=,
若以CD为直径的圆过E点,
则·=0,
即(x1+1)(x2+1)+y1y2=0,
而y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4,
则(x1+1)(x2+1)+y1y2
=(k2+1)x1x2+(2k+1)(x1+x2)+5
=-+5=0,
解得k=,满足k2>1.
11.(2016·山东高考节选)平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率是,抛物线E:x2=2y的焦点F是C的一个顶点.
(1)求椭圆C的方程.
(2)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交于不同的两点A,B,线段AB的中点为D.直线OD与过P且垂直于x轴的直线交于点M.求证:点M在定直线上.
解:(1)由题意知=,
可得a2=4b2.
因为抛物线E的焦点为F,
所以b=,a=1.
所以椭圆C的方程为x2+4y2=1.
(2)证明:设P(m>0).
由x2=2y,可得y′=x,
所以直线l的斜率为m.
因此直线l的方程为y-=m(x-m),
即y=mx-.
设A(x1,y1),B(x2,y2),D(x0,y0),
联立方程
得(4m2+1)x2-4m3x+m4-1=0.
由Δ>0,
得0<m2<2+.(*)
由根与系数的关系得x1+x2=,
因此x0=.
将其代入y=mx-,
得y0=.
因为=-,
所以直线OD的方程为y=-x.
联立方程
得点M的纵坐标yM=-,
所以点M在定直线y=-上.
12.(2016·合肥质检)已知中心在原点,焦点在y轴上的椭圆C,其上一点P到两个焦点F1,F2的距离之和为4,离心率为.
(1)求椭圆C的方程;
(2)若直线y=kx+1与曲线C交于A,B两点,求△OAB面积的取值范围.
解:(1)设椭圆的标准方程为+=1(a>b>0),
由题意可知2a=4,=,又a2+b2=c2,
解得a=2,c=,b=1,
故椭圆C的方程为+x2=1.
(2)设A(x1,y1),B(x2,y2),
由得(k2+4)x2+2kx-3=0,
故x1+x2=-,x1x2=-,①
设△OAB的面积为S,
由x1x2=-<0,
知S=(|x1|+|x2|)=|x1-x2|
==2,
令k2+3=t,知t≥3,
∴S=2.
对函数y=t+(t≥3),知y′=1-=>0,
∴y=t+在t∈[3,+∞)上单调递增,
∴t+≥,
∴0<≤,∴0<S≤,
即△OAB面积的取值范围是.
相关文档
- 2020年高考化学第一轮复习 专题 羧2021-05-145页
- 高考化学专题复习辅导同系物及同分2021-05-146页
- 黑龙江省齐齐哈尔市高考数学一模试2021-05-1426页
- 2020高考地理二轮优选习题 专题四 2021-05-1412页
- 高考真题与高考模拟题分项汇编专题2021-05-1412页
- 高考文言文必背实词虚词大全2021-05-1443页
- 北京理综高考试题word精校2021-05-1417页
- 2020版高考生物 高分突破模拟试卷:2021-05-1418页
- 高定价2008高考冲刺阶段的策略2021-05-146页
- 2020高考地理二轮优选习题 专题五 2021-05-1416页