- 332.50 KB
- 2021-05-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第14讲 导数的应用
考试
说明
1.了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).
2.了解函数在某点取得极值的必要条件和充分条件,会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).
3.会用导数解决实际问题.
考情
分析
考点
考查方向
考例
导数与函数的单调性
1.求函数的单调区间,讨论函数的单调性,
2.已知单调性求参数值或参数范围,
3.利用单调性证明不等式及确定方程根的个数等
导数与函数的极值、最值
求函数极值、最值,利用函数的极值、最值研究不等式、方程等
导数研究不等式
证明不等式,根据不等式恒成立求参数范围等
导数研究方程
确定方程根的个数,根据方程根的个数求参数范围等
【重温教材】选修2-2 第22页至第37页
【相关知识点回顾】 完成练习册第38至第39页【知识聚焦】
【知识回顾反馈练习】完成练习册第39页【对点演练】
第1课时 导数与函数的单调性
课堂考点探究
【探究点一】函数单调性的判断或证明:【练习册】第039页例1及第040页变式题
【探究点二】求函数的单调区间:【练习册】第040页例2及变式题
【探究点三】已知函数单调性确定参数的值(范围):【练习册】040页例3及第041页变式题
【探究点四】函数单调性的简单应用:【练习册】第041页例4及变式题
第2课时 导数与函数的极值、最值
课堂考点探究
3
【探究点一】利用导数解决函数的极值问题
考向1 由图像判断函数极值:【练习册】第041页例1
考向2 已知函数求极值:【练习册】第041页例2
考向3 已知极值求参数:【练习册】第042页例3
利用导数解决函数的极值问题强化练习
【探究点二】利用导数解决函数的最值问题:【练习册】第042页例4及变式题
【探究点三】利用导数研究生活中的优化问题:【练习册】043页例5及变式题
第3课时 导数与不等式
课堂考点探究
【探究点一】导数方法证明不等式:【练习册】第043页例1及变式题
【探究点二】根据不等式确定参数范围:【练习册】第044页例2及变式题
【探究点三】可化为不等式问题的函数问题:【练习册】044页例3及变式题
第4课时 导数与方程
课堂考点探究
【探究点一】求函数零点个数:【练习册】第045页例1及变式题
【探究点二】 根据零点个数确定参数:【练习册】第045页例2及变式题
【探究点三】函数零点性质的研究:【练习册】046页例3及变式题
【探究点四】可化为函数零点的函数问题:【练习册】046页例4及变式题
1.若x=-2是函数f(x)=(x2+ax-1)ex-1的极值点,则f(x)的极小值为 ( )
A.-1 B.-2e-3
C.5e-3 D.1
2.设函数f'(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf'(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是 ( )
A.(-∞,-1)∪(0,1) B.(-1,0)∪(1,+∞) C.(-∞,-1)∪(-1,0) D.(0,1)∪(1,+∞)
3. 已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是 ( )
A.(2,+∞) B.(1,+∞) C.(-∞,-2) D.(-∞,-1)
4.已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是 ( )
A.∃x0∈R,f(x0)=0
B.函数y=f(x)的图像是中心对称图形
C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)上单调递减
D.若x0是f(x)的极值点,则f'(x0)=0
5. 函数y=f(x)的导函数y=f'(x)的图像如图所示,则函数y=f(x)的图像可能是 ( )
3
6.[2017·浙江卷] 已知函数.
(1)求f(x)的导函数; (2)求f(x)在区间上的取值范围.
7.已知函数f(x)=excos x-x.
(1)求曲线y=f(x)在点(0,f(0))处的切线方程; (2)求函数f(x)在区间上的最大值和最小值
8.已知函数f(x)=ex(ex-a)-a2x.
(1)讨论f(x)的单调性; (2)若f(x)≥0,求a的取值范围.
9.设函数f(x)=xea-x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4.
(1)求a,b的值; (2)求f(x)的单调区间.
10.设函数曲线y=f(x)在点(1,f(1))处的切线方程为y=e(x-1)+2.
3
(1)求a,b; (2)证明:f(x)>1.
11.已知函数f(x)=ex-ln(x+m).
(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;
(2)当m≤2时,证明f(x)>0.
【思维导图】(学生自我绘制)
3
相关文档
- 全国卷高考语文高中14篇按篇理解性2021-05-149页
- 人教版高中英语高考优学教材梳理—2021-05-1411页
- 高中地理高考文综大题答题必备的万2021-05-1419页
- 高中立体几何练习题根据历年高考题2021-05-1410页
- 高考复习线性回归更多资料关注高中2021-05-149页
- 高中数学高考总复习简单的线性规划2021-05-1410页
- 2014高中语文易错字音录自500套高2021-05-1420页
- 2013高考回归课本高中地理必修一二2021-05-1416页
- 三年高考2019高考历史试题分项版解2021-05-1432页
- 面对高考恩施州普通高中新课程数学2021-05-1413页