- 596.00 KB
- 2021-05-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2008年全国普通高等学校招生统一考试
上海数学试卷(文史类)
考生注意:
1.答卷前,考生务必将姓名、高考准考证号、校验码等填写清楚.
2.本试卷共有21道试题,满分150分,考试时间120分钟.请考生用钢笔或圆珠笔将答案直接写在试卷上.
一、填空题(本大题满分44分)本大题共有11题,只要求直接填写结果,每个空格填对得4分,否则一律得零分.
1.不等式的解集是 .
2.若集合,满足,则实数a= .
3.若复数z满足 (i是虚数单位),则z= .
4.若函数f(x)的反函数为,则 .
5.若向量,满足且与的夹角为,则 .
6.若直线经过抛物线的焦点,则实数 .
7.若是实系数方程的一个虚根,且,则 .
8.在平面直角坐标系中,从六个点:中任取三个,这三点能构成三角形的概率是 (结果用分数表示).
9.若函数(常数)是偶函数,且它的值域为,则该函数的解析式 .
10.已知总体的各个体的值由小到大依次为2,3,3,7,a,b,12,13.7,18.3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a、b的取值分别是 .
11.在平面直角坐标系中,点的坐标分别为.如果是围成的区域(含边界)上的点,那么当取到最大值时,点的坐标是 ______ .
二、选择题(本大题满分16分)本大题共有4题,每题都给出代号为A、B、C、D的四个结论,其中有且
只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分.
12.设是椭圆上的点.若是椭圆的两个焦点,则等于( )
A.4 B.5 C.8 D.10
13.给定空间中的直线l及平面.条件“直线l与平面内两条相交直线都垂直”是“直线l与平面垂直”的( )
A.充分非必要条件 B.必要非充分条件
C.充要条件 D.既非充分又非必要条件
14.若数列是首项为,公比为的无穷等比数列,且各项的和为a,则的值是( )
A.1 B.2 C. D.
A
B
C
D
O
x
y
15.如图,在平面直角坐标系中,是一个与x轴的正半轴、y轴的正半轴分别相切于点C、D的定圆所围成的区域(含边界),A、B、C、D是该圆的四等分点.若点、点满足且,则称P优于.如果中的点满足:不存在中的其它点优于Q,那么所有这样的点Q组成的集合是劣弧( )
A. B.
C. D.
三、解答题(本大题满分90分)本大题共有6题,解答下列各题必须写出必要的步骤.
16.(本题满分12分)
如图,在棱长为2的正方体中,E是BC1的中点.求直线DE与平面ABCD所成角的大小(结果用反三角函数值表示).
17.(本题满分13分)
如图,某住宅小区的平面图呈扇形AOC.小区的两个出入口设置在点A及点C处,小区里
有两条笔直的小路,且拐弯处的转角为.已知某人从沿走到用了10分钟,从沿走到用了6分钟.若此人步行的速度为每分钟50米,求该扇形的半径的长(精确到1米).
18.(本题满分15分)本题共有2个小题,第1个题满分5分,第2小题满分10分.
已知函数f(x)=sin2x,g(x)=cos,直线与函数的图像分别交于M、N两点.
(1)当时,求|MN|的值;
(2)求|MN|在时的最大值.
19.(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分.
已知函数.
(1)若,求的值;
(2)若对于恒成立,求实数m的取值范围.
20.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.
已知双曲线.
(1)求双曲线的渐近线方程;
(2)已知点的坐标为.设是双曲线上的点,是点关于原点的对称点.
记.求的取值范围;
(3)已知点的坐标分别为,为双曲线上在第一象限内的点.记为经过原点与点的直线,为截直线所得线段的长.试将表示为直线的斜率的函数.
21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
已知数列:,,,(是正整数),与数列
:,,,,(是正整数).
记.
(1)若,求的值;
(2)求证:当是正整数时,;
(3)已知,且存在正整数,使得在,,,中有4项为100.求的值,并指出哪4项为100.
2008年全国普通高等学校招生统一考试
上海数学试卷(文史类)答案要点及评分标准
一、(第1题至第11题)
1. (0,2). 2. 2. 3. 1+i. 4. .
5. . 6. -1. 7. 4. 8. .
9. 10. 11. .
二、(第12题至第15题)
题号
12
13
14
15
代号
D
C
B
D
三、(第16题至第21题)
16. 【解】过E作EF⊥BC,交BC于F,连接DF.
∵ EF⊥平面ABCD,
∴ ∠EDF是直线DE与平面ABCD所成的角. ……………4分
由题意,得EF=
∵ …………………………..8分
∵ EF⊥DF, ∴ ……………..10分
故直线DE与平面ABCD所成角的大小是….12分
17. 【解法一】设该扇形的半径为r米. 由题意,得
CD=500(米),DA=300(米),∠CDO=……………………………4分
在中,……………6分
即…………………….9分
解得(米). …………………………………………….13分
【解法二】连接AC,作OH⊥AC,交AC于H…………………..2分
由题意,得CD=500(米),AD=300(米),………….4分
∴ AC=700(米) …………………………..6分
………….…….9分
在直角
∴ (米). ………………………13分
18、【解】(1)…………….2分
………………………………5分
(2)
…………...8分
…………………………….11分
∵ …………13分
∴ |MN|的最大值为. ……………15分
19、【解】(1). …………….2分
由条件可知,解得 …………6分
∵ …………..8分
(2)当 ……………10分
即
………………13分
故m的取值范围是 …………….16分
20、【解】(1)所求渐近线方程为 ……………...3分
(2)设P的坐标为,则Q的坐标为, …………….4分
……………7分
的取值范围是 ……………9分
(3)若P为双曲线C上第一象限内的点,
则直线的斜率 ……………11分
由计算可得,当
当 ……………15分
∴ s表示为直线的斜率k的函数是….16分
21、【解】(1)
………………..2分
∵ ………………..4分
【证明】(2)用数学归纳法证明:当
① 当n=1时,等式成立….6分
① 假设n=k时等式成立,即
那么当时,
………8分
等式也成立.
根据①和②可以断定:当…………………...10分
【解】(3)
………………………..13分
∵ 4m+1是奇数,均为负数,
∴ 这些项均不可能取到100. ………………………..15分
此时,为100. …………………………18分