• 1.20 MB
  • 2021-05-14 发布

高考物理试卷全国卷解析

  • 14页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2015年高考物理试卷全国卷1(解析版)‎ ‎1.两相邻匀强磁场区域的磁感应强度大小不同、方向平行。一速度方向与磁感应强度方向垂直的带电粒子(不计重力),从较强磁场区域进入到较弱磁场区域后,粒子的 A.轨道半径减小,角速度增大 B.轨道半径减小,角速度减小 C.轨道半径增大,角速度增大 D.轨道半径增大,角速度减小 ‎【答案】D ‎【解析】由于磁场方向与速度方向垂直,粒子只受到洛伦兹力作用,即,轨道半径,洛伦兹力不做功,从较强到较弱磁场区域后,速度大小不变,但磁感应强度变小,轨道半径变大,根据角速度可判断角速度变小,选项D正确。‎ ‎【学科网定位】磁场中带电粒子的偏转 ‎【名师点睛】洛伦兹力在任何情况下都与速度垂直,都不做功,不改变动能。‎ ‎2.如图所示,直线a、b和c、d是处于匀强电场中的两组平行线,M、N、P、Q是它们的交点,四点处的电势分别为、、、。一电子由M点分别运动到N点和P点的过程中,电场力所做的负功相等,则 A.直线a位于某一等势面内,‎ B.直线c位于某一等势面内,‎ C.若电子有M点运动到Q点,电场力做正功 D.若电子有P点运动到Q点,电场力做负功 ‎【答案】B ‎【解析】电子带负电荷,从M到N和P做功相等,说明电势差相等,即N和P的电势相等,匀强电场中等势线为平行的直线,所以NP和MQ分别是两条等势线,从M到N,电场力对负电荷做负功,说明MQ为高电势,NP为低电势。所以直线c和d都是位于某一等势线内,但是,,选项A错,B对。若电子从M点运动到Q点,初末位置电势相等,电场力不做功,选项C错。电子作为负电荷从P到Q 即从低电势到高电势,电场力做正功,电势能减少,选项D错。‎ ‎【考点定位】等势面和电场线 ‎【名师点睛】匀强电场和点电荷的电场以及等量同种点电荷和等量异种点电荷的电场线及等势面分布情况要熟记。‎ ‎3.一理想变压器的原、副线圈的匝数比为3:1,在原、副线圈的回路中分别接有阻值相同的电阻,原线圈一侧接在电压为220V的正弦交流电源上,如图所示。设副线圈回路中电阻两端的电压为,原、副线圈回路中电阻消耗的功率的比值为k,则 A.B.‎ C.D.‎ ‎【答案】A ‎【解析】原副线圈电压比等于匝数比,根据副线圈负载电阻的电压,可知副线圈电压为,原线圈电压为,副线圈电流,原副线圈电流与匝数成反比,所以原线圈电流,那么原线圈输入电压,整理可得;原副线圈电阻消耗的功率根据,电阻相等,电流为1:3,可得功率比为1:9,,对照选项A对。‎ ‎【考点定位】变压器 ‎【名师点睛】220V的电压并不是原线圈的输入电压,原线圈和电阻R串联分压。‎ ‎4.如图所示,一半径为R,粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ水平。一质量为m的质点自P点上方高度R处由静止开始下落,恰好从P点进入轨道。质点滑到轨道最低点N时,对轨道的压力为4mg,g为重力加速度的大小。用W表示质点从P点运动到N点的过程中客服摩擦力所做的功。则 A.,质点恰好可以到达Q点 B.,质点不能到达Q点 C.,质点到达Q后,继续上升一段距离 D.,质点到达Q后,继续上升一段距离 ‎【答案】C ‎【解析】根据动能定理可得P点动能,经过N点时,半径方向的合力提供向心力,可得,所以N点动能为,从P点到N点根据动能定理可得,即摩擦力做功。质点运动过程,半径方向的合力提供向心力即,根据左右对称,在同一高度,由于摩擦力做功导致右半幅的速度小,轨道弹力变小,滑动摩擦力变小,所以摩擦力做功变小,那么从N到Q,根据动能定理,Q点动能,由于,所以Q点速度仍然没有减小到0,仍会继续向上运动一段距离,对照选项C对。‎ mg FN θ ‎【考点定位】功能关系 ‎【方法技巧】动能定理分析摩擦力做功是基础,对于滑动摩擦力一定要注意压力的变化,最大的误区是根据对称性误认为左右两部分摩擦力做功相等。‎ ‎5.一带有乒乓球发射机的乒乓球台如图所示。水平台面的长和宽分别为L1和L2,中间球网高度为。发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h。不计空气的作用,重力加速度大小为。若乒乓球的发射速率为v在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v的最大取值范围是()‎ A.‎ B.‎ C.‎ D.‎ ‎【答案】D ‎【解析】发射机无论向哪个方向水平发射,乒乓球都是平抛运动,竖直高度决定了运动的时间,水平方向匀速直线运动,水平位移最小即沿中线方向水平发射恰好过球网,此时从发球点到球网,下降高度为,水平位移大小为,可得运动时间对应的最小初速度。水平位移最大即斜向对方台面的两个角发射,根据几何关系此时的位移大小为,所以平抛的初速度,对照选项D对。‎ ‎【考点定位】曲线运动 ‎【方法技巧】平抛运动一定要和实际情况相结合,题目中,最小的水平位移一定要保证越过球网。‎ ‎6.1824年,法国科学家阿拉果完成了著名的“圆盘实验”。实验中将一铜圆盘水平放置,在其中心正上方用柔软细线悬挂一枚可以自由旋转的磁针,如图所示。实验中发现,当圆盘在磁针的磁场中绕过圆盘中心的竖直轴旋转时,磁针也随着一起转动起来,但略有滞后。下列说法正确的是 A.圆盘上产生了感应电动势 B.圆盘内的涡电流产生的磁场导致磁针转动 C.在圆盘转动的过程中,磁针的磁场穿过整个圆盘的磁通量发生了变化 D.圆盘中的自由电子随圆盘一起运动形成电流,此电流产生的磁场导致磁针转动 ‎【答案】AB ‎【解析】圆盘运动过程中,半径方向的金属条在切割磁感线,在圆心和边缘之间产生了感应电动势,选项A对,圆盘在径向的辐条切割磁感线过程中,内部距离圆心远近不同的点电势不等而形成涡流产生,选项B对。圆盘转动过程中,圆盘位置,圆盘面积和磁场都没有发生变化,所以没有磁通量的变化,选项C错。圆盘本身呈现电中性,不会产生环形电流,选项D错。‎ ‎【考点定位】电磁感应 ‎【规律总结】把握磁通量的变化才是关键,根据对称性,圆盘磁通量始终等于零,无磁通量变化。‎ ‎7.如图(a),一物块在t=0时刻滑上一固定斜面,其运动的v—t图线如图(b)所示。若重力加速度及图中的、、均为已知量,则可求出 A.斜面的倾角 B.物块的质量 C.物块与斜面间的动摩擦因数 D.物块沿斜面向上滑行的最大高度 ‎【答案】ACD ‎【解析】小球滑上斜面的初速度已知,向上滑行过程为匀变速直线运动,末速度0,那么平均速度即,所以沿斜面向上滑行的最远距离,根据牛顿第二定律,向上滑行过程,向下滑行,整理可得,从而可计算出斜面的倾斜角度以及动摩擦因数,选项AC对。根据斜面的倾斜角度可计算出向上滑行的最大高度,选项D对。仅根据速度时间图像,无法找到物块质量,选项B错。‎ ‎【考点定位】牛顿运动定律 ‎【方法技巧】速度时间图像的斜率找到不同阶段的加速度,结合受力分析和运动学规律是解答此类题目的不二法门。‎ ‎8.我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4m高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落。已知探测器的质量约为1.3×109kg,地球质量约为月球的81倍,地球半径为月球的3.7倍,地球表面的重力加速度大小约为9.8m/s2。则次探测器 A.在着陆前瞬间,速度大小约为8.9m/s B.悬停时受到的反冲作用力约为2×103N C.从离开近月圆轨道到着陆这段时间内,机械能守恒 D.在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的线速度 ‎【答案】BD ‎【解析】星球表面万有引力提供重力即,重力加速度,地球表面,则月球表面 ‎,则探测器重力,选项B对,探测器自由落体,末速度,选项A错。关闭发动机后,仅在月球引力作用下机械能守恒,而离开近月轨道后还有制动悬停,所以机械能不守恒,选项C错。近月轨道即万有引力提供向心力,小于近地卫星线速度,选项D对。‎ ‎【考点定位】万有引力与航天 ‎【规律总结】万有引力提供向心力是基础,注意和运动学以及功能关系结合 ‎9.(5分)下列说法正确的是。(填正确答案标号,选对一个得2分,选对2个得4分,选对3个得5分。每选错一个扣3分,最低得分为0分)‎ A.将一块晶体敲碎后,得到的小颗粒是非晶体 B.固体可以分为晶体和非晶体两类,有些晶体在不同的方向上有不同的光学性质 C.由同种元素构成的固体,可能会由于原子的排列方式不同而成为不同的晶体 D.在合适的条件下,某些晶体可以转化为非晶体,某些非晶体也可以转化为晶体 E.在熔化过程中,晶体要吸收热量,但温度保持不变,内能也保持不变 ‎【答案】BCD ‎【解析】晶体有固定的熔点,并不会因为颗粒的大小而改变,即使敲碎为小颗粒,仍旧是晶体,选项A错。根据是否有固定的熔点,可以把固体分为晶体和非晶体两类,晶体有各向异性,选项B对。同种元素构成的可能由于原子的排列方式不同而形成不同的晶体如金刚石和炭。选项C对。晶体的分子排列结构如果遭到破坏就可能形成非晶体,反之亦然,选项D对。熔化过程中,晶体要吸热,温度不变,但是内能增大,选项E错。‎ ‎【考点定位】晶体非晶体 ‎【名师点睛】晶体和非晶体的考点,要深化认识.‎ ‎10.在双缝干涉实验中,分布用红色和绿色的激光照射同一双缝,在双缝后的屏幕上,红光的干涉条纹间距与绿光的干涉条纹间距相比(填“>”“<”或“=”)。若实验中红光的波长为,双缝到屏幕的距离为,测得第一条到第6条亮条纹中心间的距离为,则双缝之间的距离为。‎ ‎【答案】>‎ ‎【解析】双缝干涉条纹间距,红光波长长,所以红光的双缝干涉条纹间距较大,即 ‎>。条纹间距根据数据可得,根据可得。‎ ‎【考点定位】双缝干涉实验 ‎【名师点睛】双缝干涉实验的条纹间距公式熟记,对于从红光到紫光的波长频率折射率全反射临界角等等要认清变化趋势。‎ ‎11.(5分)在某次光电效应实验中,得到的遏制电压与入射光的频率的关系如图所示,若该直线的斜率和截距分别为和,电子电荷量的绝对值为,则普朗克常量可表示为,所用材料的逸出功可表示为。‎ ‎【答案】‎ ‎【解析】光电效应中,入射光子能量,克服逸出功后多余的能量转换为电子动能,反向遏制电压;整理得,斜率即,所以普朗克常量,截距为,即,所以逸出功 ‎【考点定位】光电效应 ‎【名师点睛】根据光电效应写出数学表达式,按照数学里面的截距和斜率解决问题。数学的工具作用不可忽视。‎ ‎12.(6分)某物理小组的同学设计了一个粗制玩具小车通过凹形桥最低点时的速度的实验。所用器材有:玩具小车、压力式托盘秤、凹形桥模拟器(圆弧部分的半径为R=0.20m)。‎ 完成下列填空:‎ ‎(1)将凹形桥模拟器静置于托盘秤上,如图(a)所示,托盘秤的示数为1.00kg;‎ ‎(2)将玩具小车静置于凹形桥模拟器最低点时,托盘秤的示数如图(b)所示,该示数为_____kg;‎ ‎(3)将小车从凹形桥模拟器某一位置释放,小车经过最低点后滑向另一侧,此过程中托盘秤的最大示数为m;多次从同一位置释放小车,记录各次的m值如下表所示:‎ 序号 ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ m(kg)‎ ‎1.80‎ ‎1.75‎ ‎1.85‎ ‎1.75‎ ‎1.90‎ ‎(4)根据以上数据,可求出小车经过凹形桥最低点时对桥的压力为_____N;小车通过最低点时的速度大小为_______m/s。(重力加速度大小取9.80m/s2 ,计算结果保留2位有效数字)‎ ‎【答案】(2)1.4 (4);‎ ‎【解析】‎ 解析:(2)根据秤盘指针可知量程是10kg,指针所指示数为1.4kg .(4)记录的托盘称各次示数并不相同,为减小误差,取平均值,即。而模拟器的重力为,所以小车经过凹形桥最低点的压力为。根据径向合力提供向心力即,整理可得 ‎【考点定位】圆周运动 ‎【规律总结】由于小车过程不是平衡状态,所以托盘称的示数并不等于二者的质量之和,而且要把质量和受力相互转化。其实就是一个圆周运动向心力的分析.‎ ‎13.(9分)图(a)为某同学改装和校准毫安表的电路图,其中虚线框内是毫安表的改装电路。‎ ‎(1)已知毫安表表头的内阻为100Ω,满偏电流为1mA;R1和R2为阻值固定的电阻。若使用a和b两个接线柱,电表量程为3mA;若使用a和c两个接线柱,电表量程为10mA。由题给条件和数据,可求出 Ω,Ω。‎ ‎(2)现用—量程为3mA、内阻为150Ω的标准电流表对改装电表的3mA挡进行校准,校准时需选取的刻度为0.5、1.0、1.5、2.0、2.5、3.0mA。电池的电动势为1.5V,内阻忽略不计;定值电阻R0有两种规格,阻值分别为300Ω和1000Ω;滑动变阻器R有两种规格,最大阻值分别为750Ω和3000Ω。则R0应选用阻值为Ω的电阻,R应选用最大阻值为Ω的滑动变阻器。‎ ‎(3)若电阻R1和R2中有一个因损坏而阻值变为无穷大,利用图(b)的电路可以判断出损坏的电阻。图(b)中的为保护电阻,虚线框内未画出的电路即为图(a)虚线框内的电路。则图中的d点应和接线柱(填“b”或“c”)相连。判断依据是:。‎ ‎【答案】(1)(2)(3)c若电流表无示数,则说明断路,若电流表有示数,则说明断路。‎ ‎【解析】‎ 解析:(1)定值电阻和毫安表都是并联关系,电压相等,电流和电阻成反比,若使用a和b两个接线柱,量程为3mA,则通过和的为,电流比为1:2,所以电阻比为2:1,可得。若使用a和c两个接线柱,电表量程为10mA ‎,通过的电流为,电流比为1:9,可得电阻比为9:1,即,整理可得,。‎ ‎(2)根据电流表校准的刻度,可知电路中总阻值最大为,最小阻值为。若定值电阻选择为,则无法校准3.0mA;所以定值电阻选择。由于最大阻值要达到,所以滑动变阻器要选择。‎ ‎(3)因为只有一个损坏,所以验证是否损坏即可。所以d点应和接线柱”c”相连,若电流表无示数,则说明短路,若电流表有示数,则说明断路。‎ ‎【考点定位】电流表的改装 ‎【规律总结】电流表量程的改装关键是电压相等,各支路电流之和等于总量程。若量程扩大N倍,则并联一个阻值为的电阻。‎ ‎14.(12分)如图,一长为10cm的金属棒ab用两个完全相同的弹簧水平地悬挂在匀强磁场中;磁场的磁感应强度大小为0.1T,方向垂直于纸面向里;弹簧上端固定,下端与金属棒绝缘,金属棒通过开关与一电动势为12V的电池相连,电路总电阻为2Ω。已知开关断开时两弹簧的伸长量均为0.5cm;闭合开关,系统重新平衡后,两弹簧的伸长量与开关断开时相比均改变了0.3cm,重力加速度大小取10m/s2。判断开关闭合后金属棒所受安培力的方向,并求出金属棒的质量。‎ ‎【答案】‎ ‎【解析】金属棒通电后,闭合回路电流 导体棒受到安培力 根据安培定则可判断金属棒受到安培力方向竖直向下 开关闭合前 开关闭合后 ‎【考点定位】安培力 ‎【方法技巧】开关断开前后弹簧长度变化了 ‎0.3cm是解题的关键,变化的原因是安培力的出现,从而把安培力和金属棒重力联系起来。‎ ‎15.(20分)一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m,如图(a)所示。时刻开始,小物块与木板一起以共同速度向右运动,直至时木板与墙壁碰撞(碰撞时间极短)。碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板。已知碰撞后1s时间内小物块的图线如图(b)所示。木板的质量是小物块质量的15倍,重力加速度大小g取10m/s2。求 ‎(1)木板与地面间的动摩擦因数及小物块与木板间的动摩擦因数;‎ ‎(2)木板的最小长度;‎ ‎(3)木板右端离墙壁的最终距离。‎ ‎【答案】(1)(2)(3)‎ ‎【解析】(1)根据图像可以判定碰撞前木块与木板共同速度为 碰撞后木板速度水平向左,大小也是 木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有 解得 木板与墙壁碰撞前,匀减速运动时间,位移,末速度 其逆运动则为匀加速直线运动可得 带入可得 木块和木板整体受力分析,滑动摩擦力提供合外力,即 可得 ‎(2)碰撞后,木板向左匀减速,依据牛顿第二定律有 可得 对滑块,则有加速度 滑块速度先减小到0,此时碰后时间为 此时,木板向左的位移为末速度 滑块向右位移 此后,木块开始向左加速,加速度仍为 木块继续减速,加速度仍为 假设又经历二者速度相等,则有 解得 此过程,木板位移末速度 滑块位移 此后木块和木板一起匀减速。‎ 二者的相对位移最大为 滑块始终没有离开木板,所以木板最小的长度为 ‎(3)最后阶段滑块和木板一起匀减速直到停止,整体加速度 位移 所以木板右端离墙壁最远的距离为 ‎【考点定位】牛顿运动定律 ‎【名师点睛】分阶段分析,环环相扣,前一阶段的末状态即后一阶段的初始状态,认真沉着,不急不躁 ‎16.(10分)如图,一固定的竖直气缸有一大一小两个同轴圆筒组成,两圆筒中各有一个活塞,已知大活塞的质量为,横截面积为,小活塞的质量为,横截面积为;两活塞用刚性轻杆连接,间距保持为,气缸外大气压强为,温度为。初始时大活塞与大圆筒底部相距,两活塞间封闭气体的温度为,现气缸内气体温度缓慢下降,活塞缓慢下移,忽略两活塞与气缸壁之间的摩擦,重力加速度取,求 ‎(i)在大活塞与大圆筒底部接触前的瞬间,缸内封闭气体的温度;‎ ‎(ii)缸内封闭的气体与缸外大气达到热平衡时,缸内封闭气体的压强。‎ ‎【答案】(i)(ii)‎ ‎【解析】(1)大小活塞缓慢下降过程,活塞外表受力情况不变,气缸内压强不变,气缸内气体为等压变化,即 初始 末状态 带入可得 ‎(2)对大小活塞受力分析则有 可得 缸内封闭的气体与缸外大气达到热平衡时,气体体积不变,为等容变化 可得 ‎【考点定位】理想气体状态方程 ‎【名师点睛】上下的活塞面积不相等,是此题目解题过程的关键。‎ ‎17.(10分)甲乙两列简谐横波在同一介质中分别沿轴正向和负向传播,波速均为,两列波在时的波形曲线如图所示。求 ‎(i)时,介质中偏离平衡位置位移为16的所有质点的坐标;‎ ‎(ii)从开始,介质中最早出现偏离平衡位置位移为的质点的时间。‎ ‎【答案】(i)(ii)‎ ‎【解析】(1)根据两列波的振幅都为,偏离平衡位置位移为16的的质点即为两列波的波峰相遇。‎ 设质点坐标为 根据波形图可知,甲乙的波长分别为,‎ 则甲乙两列波的波峰坐标分别为 综上,所有波峰和波峰相遇的质点坐标为 整理可得 ‎(ii)偏离平衡位置位移为是两列波的波谷相遇的点,‎ 时,波谷之差 整理可得 波谷之间最小的距离为 两列波相向传播,相对速度为 所以出现偏离平衡位置位移为的最短时间 ‎【考点定位】机械振动机械波 ‎【名师点睛】列出波峰或波谷的坐标表达式是关键;不存在波谷和波谷相遇的点。‎ ‎18.(10分)如图,在足够长的光滑水平面上,物体A、B、C位于同一直线上,A位于B、C之间。A的质量为,B、C的质量都为,三者都处于静止状态,现使A以某一速度向右运动,求和之间满足什么条件才能使A只与B、C各发生一次碰撞。设物体间的碰撞都是弹性的。‎ ‎【答案】‎ ‎【解析】设A运动的初速度为 A向右运动与C发生碰撞,根据弹性碰撞可得 可得 要使得A与B发生碰撞,需要满足,即 A反向向左运动与B发生碰撞过程,弹性碰撞 整理可得 由于,所以A还会向右运动,根据要求不发生第二次碰撞,需要满足 即 整理可得 解方程可得 ‎【名师点睛】对于弹性碰撞的动量守恒和能量守恒要熟知,对于和一个静止的物体发生弹性碰撞后的速度表达式要熟记,如果考场来解析,太浪费时间。‎ ‎【考点定位】弹性碰撞