- 299.50 KB
- 2021-05-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
指数与对数的运算
热点一指数运算、化简、求值
1、分数指数幂的概念和运算法则:为避免讨论,我们约定a>0,n,mN*,且为既约分数,分数指数幂可如下定义:
2.有理数指数幂的运算性质
(1) (2) (3)
当a>0,p为无理数时,ap是一个确定的实数,上述有理数指数幂的运算性质仍适用.
3.指数幂的一般运算步骤
有括号先算括号里的;无括号先做指数运算.负指数幂化为正指数幂的倒数.底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数,先要化成假分数,然后要尽可能用幂的形式表示,便于用指数运算性质.在化简运算中,也要注意公式:a2-b2=(a-b)(a+b),(a±b)2=a2±2ab+b2,(a±b)3=a3±3a2b+3ab2±b3,a3-b3=(a-b)(a2+ab+b2),a3+b3=(a+b)(a2-ab+b2)的运用,能够简化运算.
【例2】1.用分数指数幂形式表示下列各式(式中):
(1); (2); (3);
2.计算:;
热点二 对数的运算、化简、求值
1.对数的概念:如果ax=N(a>0且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,其中 a 叫做对数的底数, N 叫做真数.(ax=N x=logaN)
(2)对数的性质:①a= N ; ②logaaN= N (a>0且a≠1).
3.对数的运算法则:如果 a>0,a≠1,M>0, N>0 有:
4.对数换底公式: ( a>0 ,a a≠1 ,m>0 ,m≠1,N>0).
5.两个常用的推论:①, .②
【例3】1.计算:
(1)log535-2log5+log57-log51.8; (2) (lg5)2+lg2·lg50.
(3);
(4)2(lg)2+lg·lg5+;
3.计算:log535+2log-log5-log514;
4.设log34·log48·log8m=log416,求m;
5.计算:①, ②.
相关文档
- 高考地理总复习专题14区域生态环境2021-05-1426页
- 全国高考理科数学试题及答案四川卷2021-05-145页
- 2020年高考物理实验新题特快专递十2021-05-148页
- 2020版高考化学一轮复习 第十二章 2021-05-149页
- 备战高考数学优质试卷分项版第02期2021-05-1424页
- (浙江专版)备战2020高考地理一轮复习2021-05-149页
- 2020版高考英语一轮复习 Unit 5 Th2021-05-148页
- (浙江选考)2020版高考英语大二轮复习2021-05-144页
- 2020高考生物二轮复习 加试选择题2021-05-143页
- 备战2020年高考数学大一轮复习 热2021-05-1412页