- 647.50 KB
- 2021-05-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
www.ks5u.com
2017年普通高等学校招生全国统一考试
文科数学
一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={1,2,3,4},B={2,4,6,8},则AB中元素的个数为
A.1 B.2 C.3 D.4
2.复平面内表示复数z=i(–2+i)的点位于
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.
根据该折线图,下列结论错误的是
A.月接待游客逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳
4.已知,则=
A. B. C. D.
5.设x,y满足约束条件,则z=x-y的取值范围是
A.–3,0] B.–3,2] C.0,2] D.0,3]
6.函数f(x)= sin(x+)+cos(x−)的最大值为
A. B.1 C. D.
7.函数y=1+x+的部分图像大致为
A. B.
C. D.
8.执行下面的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为
A.5 B.4 C.3 D.2
9.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为
A. B. C. D.
10.在正方体中,E为棱CD的中点,则
A. B. C. D.
11.已知椭圆C:,(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线相切,则C的离心率为
A. B. C. D.
12.已知函数有唯一零点,则a=
A. B. C. D.1
二、填空题:本题共4小题,每小题5分,共20分。
13.已知向量,且a⊥b,则m = .
14.双曲线(a>0)的一条渐近线方程为,则a= .
15.△ABC的内角A,B,C的对边分别为a,b,c。已知C=60°,b=,c=3,则A=_________。
16.设函数则满足的x的取值范围是__________。
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)设数列满足.
(1)求的通项公式;
(2)求数列 的前n项和.
18.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温
10,15)
15,20)
20,25)
25,30)
30,35)
35,40)
天数
2
16
36
25
7
4
以最高气温位于各区间的频率代替最高气温位于该区间的概率。
(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.
19.(12分)如图,四面体ABCD中,△ABC是正三角形,AD=CD.
(1)证明:AC⊥BD;
(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.
20.(12分)
在直角坐标系xOy中,曲线y=x2+mx–2与x轴交于A,B两点,点C的坐标为(0,1).当m变化时,解答下列问题:
(1)能否出现AC⊥BC的情况?说明理由;
(2)证明过A,B,C三点的圆在y轴上截得的弦长为定值.
21.(12分)已知函数=lnx+ax2+(2a+1)x.
(1)讨论的学%单调性;
(2)当a﹤0时,证明.
(二)选考题:共10分。请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。
22.选修4―4:坐标系与参数方程](10分)
在直角坐标系xOy中,直线l1的参数方程为(t为参数),直线l2的参数方程为.设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.
(1)写出C的普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)−=0,M为l3与C的交点,求M的极径.
23.选修4—5:不等式选讲](10分)
已知函数=│x+1│–│x–2│.
(1)求不等式≥1的解集;
(2)若不等式≥x2–x +m的解集非空,求m的取值范围.
一、选择题:
1.B 2.B 3 A 4 A 5.B 6 A 7.D 8.D 9.B. 10.C 11.A 12.C
二、填空题
13.2 14.5 15.75°16.
三、解答题:
17.
18.解:(1)需求量不超过300瓶,即最高气温不高于,从表中可知有54天,
∴所求概率为.
(2)的可能值列表如下:
最高气温
10,15)
15,20)
20,25)
25,30)
30,35)
35,40)
300
900
900
900
低于:;
:;
不低于:
∴大于0的概率为.
19.(1)证明:取中点,连
∵,为中点,
∴,
又∵是等边三角形,
∴,
又∵,∴平面,平面,
∴.
20.解:(1)设,则是方程的根,
所以,
则,
所以不会能否出现AC⊥BC的情况。
(2)解法1:过A,B,C三点的圆的圆心必在线段AB垂直平分线上,设圆心,则,由得,化简得,所以圆E的方程为,
令得,所以过A,B,C三点的圆在y轴上截得的弦长为,所以
所以过A,B,C三点的圆在y轴上截得的弦长为定值
解法2:设过A,B,C三点的圆与y轴的另一个交点为D,
由可知原点O在圆内,由相交弦定理可得,
又,所以,
所以过A,B,C三点的圆在y轴上截得的弦长为,为定值.
21.解:(1)
当时,,则在单调递增
当时,则在单调递增,在单调递减.
(2)由(1)知,当时,
,令 ()
则,解得
∴在单调递增,在单调递减
∴,∴,即,∴.
(二)选考题:
22.(1)直线的普通方程为
直线的普通方程为
消去k得 ,
即C的普通方程为.
(2)化为普通方程为
联立 得
∴
∴与C的交点M的极径为.
23
(2)原式等价于存在,使
成立,即
设
由(1)知
当时,
其开口向下,对称轴
∴
当时
其开口向下,对称轴为
∴
当时,
其开口向下,对称轴为
∴
综上
∴的取值范围为 .