- 154.05 KB
- 2021-05-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
高考导航 从近几年的高考试题看,全国卷交替考查三角函数、解三角形.该部分解答题是高考得分的基本组成部分,不能掉以轻心.该部分的解答题考查的热点题型有:一考查三角函数的图像变换以及单调性、最值等;二考查解三角形问题;三是考查三角函数、解三角形与平面向量的交汇性问题,在解题过程中抓住平面向量作为解决问题的工具,要注意三角恒等变换公式的多样性和灵活性,注意题目中隐含的各种限制条件,选择合理的解决方法,灵活地实现问题的转化.
热点一 三角函数的图像和性质(规范解答)
注意对基本三角函数y=sin x,y=cos x的图像与性质的理解与记忆,有关三角函数的五点作图、图像的平移、由图像求解析式、周期、单调区间、最值和奇偶性等问题的求解,通常先将给出的函数转化为y=Asin(ωx+φ)的形式,然后利用整体代换的方法求解.
【例1】 (满分13分)(2015·北京卷)已知函数f(x)=sin x-2sin2.
(1)求f(x)的最小正周期;
(2)求f(x)在区间上的最小值.
满分解答 (1)因为f(x)=sin x+cos x-.2分
=2sin-.4分
所以f(x)的最小正周期为2π.6分
(2)因为0≤x≤,
所以≤x+≤π.8分
当x+=π,即x=时,f(x)取得最小值.11分
所以f(x)在区间上的最小值为f=-.13分
❶将f(x)化为asin x+bcos x+c形式得…………2分;
❷将f(x)化为Asin(ωx+φ)+h形式得…………2分;
❸求出最小正周期得…………2分.
❹写出ωx+φ的取值范围得…………2分.
❺利用单调性分析最值得…………3分.
❻求出最值得…………2分.
求函数y=Asin(ωx+φ)+B周期与最值的模板
第一步:三角函数式的化简,一般化成y=Asin(ωx+φ)+h或y=Acos(ωx+φ)+h的形式;
第二步:由T=求最小正周期;
第三步:确定f(x)的单调性;
第四步:确定各单调区间端点处的函数值;
第五步:明确规范地表达结论.
【训练1】 设函数f(x)=-sin2ωx-sin ωxcos ωx(ω>0),且y=f(x)的图像的一个对称中心到最近的对称轴的距离为.
(1)求ω的值;
(2)求f(x)在区间上的最大值和最小值.
解 (1)f(x)=-sin2ωx-sin ωxcos ωx
=-·-sin 2ωx
=cos 2ωx-sin 2ωx=-sin.
因为y=f(x)的图像的一个对称中心到最近的对称轴的距离为,故该函数的周期T=4×=π.又ω>0,所以=π,因此ω=1.
(2)由(1)知f(x)=-sin.设t=2x-,则函数f(x)可转化为y=-sin t.
当π≤x≤时,≤t=2x-≤ ,
如图所示,作出函数y=sin t在 上的图像,
由图像可知,当t∈时,sin t∈,
故-1≤-sin t≤,因此-1≤f(x)=-sin≤.
故f(x)在区间上的最大值和最小值分别为,-1.
热点二 解三角形
高考对解三角形的考查,以正弦定理、余弦定理的综合运用为主.其命题规律可以从以下两方面看:(1)从内容上看,主要考查正弦定理、余弦定理以及三角函数公式,一般是以三角形或其他平面图形为背景,结合三角形的边角关系考查学生利用三角函数公式处理问题的能力;(2)从命题角度看,主要是在三角恒等变换的基础上融合正弦定理、余弦定理,在知识的交汇处命题.
【例2】 (2017·咸阳模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,f(x)=2sin(x-A)cos x+sin(B+C)(x∈R),函数f(x)的图像关于点对称.
(1)当x∈时,求函数f(x)的值域;
(2)若a=7,且sin B+sin C=,求△ABC的面积.
解 (1)∵f(x)=2sin(x-A)cos x+sin(B+C)
=2(sin xcos A-cos xsin A)cos x+sin A
=2sin xcos Acos x-2cos2xsin A+sin A
=sin 2xcos A-cos 2xsin A=sin(2x-A),
又函数f(x)的图像关于点对称,
则f=0,即sin=0,
又A∈(0,π),则A=,
则f(x)=sin.
由于x∈,
则2x-∈,
即-b=,∴a+c∈(,2].
即a+c的取值范围是(,2].
探究提高 向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.
【训练3】 已知向量a=(m,cos 2x),b=(sin 2x,n),函数f(x)=a·b,且y=f(x)的图像过点和点.
(1)求m,n的值;
(2)将y=f(x)的图像向左平移φ(0<φ<π)个单位后得到函数y=g(x)的图像,若y=g(x)图像上各最高点到点(0,3)的距离的最小值为1,求y=g(x)的单调递增区间.
解 (1)由题意知f(x)=a·b=msin 2x+ncos 2x.
因为y=f(x)的图像过点和,
所以
即解得
(2)由(1)知f(x)=sin 2x+cos 2x=2sin.
由题意知g(x)=f(x+φ)=2sin.
设y=g(x)的图像上符合题意的最高点为(x0,2),
由题意知x+1=1,所以x0=0,
即到点(0,3)的距离为1的最高点为(0,2).
将其代入y=g(x)得sin=1,
因为0<φ<π,所以φ=,
因此g(x)=2sin=2cos 2x.
由2kπ-π≤2x≤2kπ,k∈Z得kπ-≤x≤kπ,k∈Z.
所以函数y=g(x)的单调递增区间为,k∈Z.
(建议用时:70分钟)
1.(2017·南昌调研)函数f(x)=3sin的部分图像如图所示.
(1)写出f(x)的最小正周期及图中x0,y0的值;
(2)求f(x)在区间上最大值和最小值.
解 (1)由题得,f(x)的最小正周期为π,y0=3.
当y0=3时,sin=1,
由题干图像可得2x0+=2π+,
解得x0=.
(2)因为x∈,
所以2x+∈.
于是:当2x+=0,即x=-时,f(x)取得最大值0;
当2x+=-,即x=-时,f(x)取得最小值-3.
2.(2017·郑州模拟)在△ABC中,内角A,B,C所对应的边分别为a,b,c,已知asin 2B=bsin A.
(1)求B;
(2)若cos A=,求sin C的值.
解 (1)在△ABC中,
由=,
可得asin B=bsin A,
又由asin 2B=bsin A,
得2asin Bcos B=bsin A=asin B,
又B∈(0,π),所以sin B≠0,
所以cos B=,
得B=.
(2)由cos A=,A∈(0,π),得sin A=,
则sin C=sin[π-(A+B)]=sin(A+B),
所以sin C=sin
=sin A+cos A=.
3.(2017·西安调研)设函数f(x)=sin+2sin2(ω>0),已知函数f(x)的图像的相邻两对称轴间的距离为π.
(1)求函数f(x)的解析式;
(2)若△ABC的内角A,B,C所对的边分别为a,b,c(其中b<c),且f(A)=,△ABC的面积为S=6,a=2,求b,c的值.
解 (1)f(x)=sin ωx+cos ωx+1-cos ωx
=sin ωx-cos ωx+1=sin+1.
∵函数f(x)的图像的相邻两对称轴间的距离为π,
∴函数f(x)的周期为2π.∴ω=1.
∴函数f(x)的解析式为f(x)=sin+1.
(2)由f(A)=,得sin=.
又∵A∈(0,π),∴A=.
∵S=bcsin A=6,∴bcsin =6,bc=24,
由余弦定理,得a2=(2)2=b2+c2-2bccos =b2+c2-24.
∴b2+c2=52,又∵b<c,解得b=4,c=6.
4.(2016·济南名校联考)已知函数f(x)=sin ωx+2cos2+1-(ω>0)的周期为π.
(1)求f(x)的解析式并求其单调递增区间;
(2)将f(x)的图像先向下平移1个单位长度,再向左平移φ(φ>0)个单位长度得到函数h(x)的图像,若h(x)为奇函数,求φ的最小值.
解 (1)f(x)=sin ωx+2cos2+1-=
sin ωx+2×+1-
=sin ωx+cos ωx+1=2sin(ωx+)+1.
又函数f(x)的周期为π,因此 =π,∴ω=2.
故f(x)=2sin+1.
令2kπ-≤2x+≤2kπ+(k∈Z),
得kπ-≤x≤kπ+(k∈Z),即函数f(x)的单调递增区间为(k∈Z).
(2)由题意可知h(x)=2sin,
又h(x)为奇函数,则2φ+=kπ,
∴φ=-(k∈Z).∵φ>0,∴当k=1时,φ取最小值.
5.已知△ABC中内角A,B,C的对边分别为a,b,c,向量m=
(2sin B,-),n=(cos 2B,2cos2-1),且m∥n.
(1)求锐角B的大小;
(2)如果b=2,求S△ABC的最大值.
解 (1)∵m∥n,
∴2sin B=-cos 2B,
∴sin 2B=-cos 2B,即tan 2B=-.
又∵B为锐角,∴2B∈(0,π),
∴2B=,∴B=.
(2)∵B=,b=2,
由余弦定理b2=a2+c2-2accos B,
得a2+c2-ac-4=0.
又a2+c2≥2ac,代入上式,得ac≤4,
当且仅当a=c=2时等号成立.
故S△ABC=acsin B=ac≤,
当且仅当a=c=2时等号成立,
即S△ABC的最大值为.
6.(2017·合肥模拟)已知函数f(x)=a·b,其中a=(2cos x,-sin 2x),b=(cos x,1),x∈R.
(1)求函数y=f(x)的单调递减区间;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=-1,a=,且向量m=(3,sin B)与n=(2,sin C)共线,求边长b和c的值.
解 (1)f(x)=2 cos2x-sin 2x=1+cos 2x-sin 2x=1+2cos,
令2kπ≤2x+≤2kπ+π(k∈Z),
解得kπ-≤x≤kπ+(k∈Z),
∴函数y=f(x)的单调递减区间为(k∈Z).
(2)∵f(A)=1+2cos=-1,
∴cos=-1,又<2A+<,
∴2A+=π,即A=.
∵a=,∴由余弦定理得a2=b2+c2-2bccos A=(b+c)2-3bc=7.①
∵向量m=(3,sin B)与n=(2,sin C)共线,
∴2sin B=3sin C,由正弦定理得2b=3c,②
由①②得b=3,c=2.
特别提醒:教师配赠习题、课件、视频、图片、文档等各种电子资源见《创新设计·高考总复习》光盘中内容.