- 1.41 MB
- 2021-05-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2017高考真题分类汇编:解析几何
www.ks5u.com
1.【2017浙江 2】椭圆的离心率是( )
(A) (B) (C) (D)
2.【2017课标I 5】已知是双曲线:的右焦点,是上一点,且与轴垂直,点的坐标是,则的面积为( )
(A) (B) (C) (D)
3.【2017课标II 5】若,则双曲线的离心率的取值范围是( )
(A) (B) (C) (D)
4.【2017天津 5】已知双曲线的左焦点为,点在双曲线的渐近线上,是边长为2的等边三角形(为原点),则双曲线的方程为( )
(A) (B) (C) (D)
5.【2017课标III 11】已知椭圆:的左、右顶点分别为,且以线段为直径的圆与直线相切,则的离心率为( )
A. B. C. D.
6.【2017课标II 12】过抛物线的焦点,且斜率为的直线交于点(在轴上方),为的准线,点在上且,则到直线的距离为( )
(A) (B) (C) (D)
7.【2017课标I 12】设是椭圆:长轴的两个端点,若上存在点满足
,则的取值范围是( )
(A) (B) (C) (D)
8.【2017江苏 8】 在平面直角坐标系中,双曲线的右准线与它的两条渐近线分别交于点,其焦点是,则四边形的面积是__________。
9.【2017北京 10】若双曲线的离心率为,则实数__________。
10.【2017天津 12】设抛物线的焦点为,准线为。已知点在上,以为圆心的圆与轴的正半轴相切于点,若,则圆的方程为____________________。
11.【2017江苏 13】在平面直角坐标系中,,,点在圆:上,若,则点的横坐标的取值范围是_____________。
12.【2017课标III 14】双曲线的一条渐近线方程为,则 。
13.【2017山东 15】在平面直角坐标系中,双曲线的右支与焦点为的抛物线交于两点,若,则该双曲线的渐近线方程为 。
14.【2017江苏 17】 如图,在平面直角坐标系中,椭圆:的左、右焦点分别为,离心率为,两准线之间的距离为8。点在椭圆上,且位于第一象限,过点作直线的垂线,过点作直线的垂线。⑴求椭圆的标准方程;⑵若直线与的交点在椭圆上,求点的坐标。
15.【2017北京 19】已知椭圆的两个顶点分别为,,焦点在轴上,离心率为。
⑴求椭圆的方程;⑵点为轴上一点,过作轴的垂线交椭圆于不同的两点,过作的垂线交于点,求证:与的面积之比为。
16.【2017课标I 20】设为曲线:上两点,与的横坐标之和为4。⑴求直线的斜率;⑵设为曲线上一点,在处的切线与直线平行,且,求直线的方程。
17.【2017课标II 20】设为坐标原点,动点在椭圆:上,过作轴的垂线,垂足为,点满足。⑴求点的轨迹方程;⑵设点在直线上,且,证明过点且垂直于的直线过的左焦点。
18.【2017课标III 20】在直角坐标系中,曲线与轴交于两点,点的坐标为。当变化时,解答下列问题:⑴能否出现的情况?说明理由;⑵证明过三点的圆在轴上截得的弦长为定值。
19.【2017天津 20】已知椭圆的左焦点为,右顶点为,点的坐标为,的面积为。⑴求椭圆的离心率;⑵设点在线段上,,延长线段与椭圆交于点,点在轴上,,且直线与直线间的距离为,四边形的面积为。①求直线的斜率;②求椭圆的方程。
20.【2017山东 21】在平面直角坐标系中,已知椭圆:的离心率为,椭圆截直线所得线段的长度为。⑴求椭圆的方程;⑵动直线交椭圆于两点,交轴于点,点是关于的对称点,圆的半径为。设为的中点,与圆分别相切于点,求的最小值。
21.【2017浙江 21】如图,已知抛物线,点,,抛物线上的点。过点作直线的垂线,垂足为。⑴求直线斜率的取值范围;⑵求的最大值。
附答案
BDCDA CA 8.;9.2;10.;11.;12.5;13.;
14.解:⑴设椭圆的半焦距为,则且,解得,。故,从而椭圆的方程为;
⑵由⑴知,。设,当时,与相交于,与题设不符。当时,因,,故,,从而直线的方程为,直线的方程为。联立两方程解得,,因此。因点在椭圆上,故,即或。又因为,由,解得;,无解。因此。
15.解:⑴设椭圆的方程为,由题得,解得。故
,所以椭圆的方程为;
⑵设,则,。由题知且,故,。因此:,:。联立两方程解得为点的纵坐标。由点在椭圆上,得,故。又,
,所以与的面积之比为。
16.解:⑴设,则,,,故直线
的斜率;
⑵由得,设,则即,故。设:,则线段的中点为,。将代入得。当即时,,故。由题设可知,故,解得。所以直线的方程为。
17.解:⑴设,,则,,,故,。又,故,此即为点的轨迹方程;
⑵由题知,设,,则,,故
。又,,故。又由⑴知,故,所以,即。又过点存在唯一直线垂直于,所以过点且垂直于的直线过的左焦点。
18.解:⑴设,则是方程的两根,故,。因此,从而不会出现的情况;
⑵法一:过三点的圆的圆心必在的中垂线上,设圆心,则。由得,化简得,所以所求圆的方程为。令得,,所以过三点的圆在轴上截得的弦长为,所以过三点的圆在轴上截得的弦长为定值。
法二:设过三点的圆与轴的另一个交点为,由可知原点在圆内,由相交弦定理可得,又,所以,所以过三点的圆在轴上截得的弦长为,为定值。
19.解:⑴设椭圆的离心率为,由题,又,可得,即
。因为,解得。所以,椭圆的离心率为;
⑵①由题可设:,由⑴知,可得:,即。由可解得,,因此。由题,故,整理得,故,从而直线的斜率为;
②由可得,故椭圆方程可表示为。由①知:,代入椭圆方程并整理得,解得(舍)或,故,从而可得
,因此。由题知即为与这两条平行直线间的距离,故直线与都垂直于直线,因此,所以。同理可得,因此,解得,故椭圆的方程为。
20.解:⑴由题,即。又当时,,故。所以,,从而椭圆的方程为;
⑵设,,由得,由得,且,故,所以。又,故,所以。令
,则,从而。令,则,
当时,故在单调递增,从而,当且仅当即时取等号,此时即。所以。设,则,所以的最小值为,从而的最小值为,此时直线的斜率时。综上所述:当,且时,取得最小值为。
21.解:⑴设直线的斜率为,则,而,故;
⑵易知直线:,直线:。由得,故即,因此。由可
解得点的横坐标是,所以。又
,故。令,则,因此在区间上单调递增,上单调递减,因此当时,取得最大值。
相关文档
- 高考地理二轮复习专题3地壳物质循2021-05-145页
- 2018-一轮复习高考英语用 Happy Ma2021-05-148页
- 高考地理 七类综合题题型与万能答2021-05-1419页
- 助力2014高考英语任务型阅读专项特2021-05-144页
- 三年高考2019高考物理试题分项版解2021-05-147页
- 2019高考英语二轮阅读理解精选专练2021-05-147页
- 高考 化学卷答案精排2021-05-149页
- 2014年版高考英语三轮仿真模拟试卷2021-05-1417页
- 2018版高考文科数学(北师大版)一轮文2021-05-1417页
- 2020版高考地理巩固练题(2)(含解析)新2021-05-146页