- 250.73 KB
- 2021-05-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第8讲 函数与方程、函数的应用
最新考纲 1.结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数;2.了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义;3.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.
知 识 梳 理
1.函数的零点
(1)函数的零点的概念
函数y=f(x)的图像与横轴的交点的横坐标称为这个函数的零点.
(2)函数零点与方程根的关系
方程f(x)=0有实数根⇔函数y=f(x)的图像与x轴有交点⇔函数y=f(x)有零点.
(3)零点存在性定理
若函数y=f(x)在闭区间[a,b]上的图像是连续曲线,并且在区间端点的函数值符号相反,即f(a)·f(b)<0,则在区间(a,b)内,函数y=f(x)至少有一个零点,即相应方程f(x)=0在区间(a,b)内至少有一个实数解.
2.二次函数y=ax2+bx+c(a>0)的图像与零点的关系
Δ=b2-4ac
Δ>0
Δ=0
Δ<0
二次函数
y=ax2+bx+c
(a>0)的图像
与x轴的交点
(x1,0),
(x2,0)
(x1,0)
无交点
零点个数
2
1
0
3.常见的几种函数模型
(1)一次函数模型:y=kx+b(k≠0).
(2)反比例函数模型:y=(k≠0).
(3)二次函数模型:y=ax2+bx+c(a,b,c为常数,a≠0).
(4)指数函数模型:y=a·bx+c(b>0,b≠1,a≠0).
(5)对数函数模型:y=mlogax+n(a>0,a≠1,m≠0).
4.指数、对数、幂函数模型性质比较
函数
性质
y=ax
(a>1)
y=logax
(a>1)
y=xn
(n>0)
在(0,+∞)
上的增减性
单调递增
单调递增
单调递增
增长速度
越来越快
越来越慢
相对平稳
图像的变化
随x的增大逐渐表现为与y轴平行
随x的增大逐渐表现为与x轴平行
随n值变化
而各有不同
值的比较
存在一个x0,当x>x0时,有logax0,因此函数f(x)有且只有一个零点.
答案 B
3.(2015·安徽卷)下列函数中,既是偶函数又存在零点的是( )
A.y=cos x B.y=sin x
C.y=ln x D.y=x2+1
解析 由函数是偶函数,排除选项B、C,又选项D中函数没有零点,排除D,y=cos x为偶函数且有零点.
答案 A
4.已知某种动物繁殖量y(只)与时间x(年)的关系为y=alog3(x+1),设这种动物第2年有100只,到第8年它们发展到( )
A.100只 B.200只
C.300只 D.400只
解析 由题意知100=alog3(2+1),∴a=100,∴y=100log3(x+1),当x=8时,y=100log39=200.
答案 B
5.函数f(x)=ax+1-2a在区间(-1,1)上存在一个零点,则实数a的取值范围是________.
解析 因为函数f(x)=ax+1-2a在区间(-1,1)上是单调函数,所以若f(x)在区间(-1,1)上存在一个零点,则满足f(-1)f(1)<0,即(-3a+1)·(1-a)<0,解得0,
f(b)=(b-c)(b-a)<0,f(c)=(c-a)(c-b)>0,
由函数零点存在性定理可知:在区间(a,b),(b,c)内分别存在零点,又函数f(x)是二次函数,最多有两个零点;因此函数f(x)的两个零点分别位于区间(a,b),(b,c)内,故选A.
(2)法一 函数f(x)的零点所在的区间可转化为函数g(x)=ln x,h(x)=-x
+2图像交点的横坐标所在的取值范围.作图如下:
可知f(x)的零点所在的区间为(1,2).
法二 易知f(x)=ln x+x-2在(0,+∞)上为增函数,
且f(1)=1-2=-1<0,f(2)=ln 2>0.
所以根据函数零点存在性定理可知在区间(1,2)内函数存在零点.
答案 (1)A (2)B
规律方法 确定函数f(x)的零点所在区间的常用方法
(1)利用函数零点的存在性定理:首先看函数y=f(x)在区间[a,b]上的图像是否连续,再看是否有f(a)·f(b)<0.若有,则函数y=f(x)在区间(a,b)内必有零点.
(2)数形结合法:通过画函数图像,观察图像与x轴在给定区间上是否有交点来判断.
【训练1】 已知函数f(x)=ln x-x-2的零点为x0,则x0所在的区间是( )
A.(0,1) B.(1,2) C.(2,3) D.(3,4)
解析 ∵f(x)=ln x-x-2在(0,+∞)上是增函数,
又f(1)=ln 1--1=ln 1-2<0,
f(2)=ln 2-0=ln 2-1<0,f(3)=ln 3->0.
故f(x)的零点x0∈(2,3).
答案 C
考点二 函数零点个数的判断
【例2】 (1)函数f(x)=的零点个数是________.
(2)函数f(x)=2x|log0.5x|-1的零点个数为( )
A.1 B.2 C.3 D.4
解析 (1)当x≤0时,令x2-2=0,解得x=-(正根舍).所以在(-∞,0]上有一个零点.
当x>0时,f′(x)=2+>0恒成立,所以f(x)在(0,+∞)上是增函数.
又因为f(2)=-2+ln 2<0,f(3)=ln 3>0,所以f(x)在(0,+∞)上有一个零点,综上,函数f(x)的零点个数为2.
(2)
令f(x)=2x|log0,5x|-1=0,得|log0.5x|=x.
设g(x)=|log0.5x|,h(x)=x,在同一坐标系下分别画出函数g(x),h(x)的图像(如图).由图像知,两函数的图像有两个交点,因此函数f(x)有2个零点.
答案 (1)2 (2)B
规律方法 函数零点个数的判断方法:
(1)直接求零点,令f(x)=0,有几个解就有几个零点;
(2)零点存在性定理,要求函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,再结合函数的图像与性质确定函数零点个数;
(3)利用图像交点个数,作出两函数图像,观察其交点个数即得零点个数.
【训练2】 (2015·湖北卷)f(x)=2sin xsin-x2的零点个数为________.
解析
f(x)=2sin xcos x-x2=sin 2x-x2,则函数的零点即为函数y=sin 2x与函数y=x2图像的交点,如图所示,两图像有2个交点,则函数有2个零点.
答案 2
考点三 函数零点的应用
【例3】 (2017·昆明调研)已知定义在R上的偶函数f(x)满足f(x-4)=f(x),且在区间[0,2]上f(x)=x,若关于x的方程f(x)=logax有三个不同的实根,求a的取值范围.
解 由f(x-4)=f(x)知,函数的周期T=4.
又f(x)为偶函数,
∴f(x)=f(-x)=f(4-x),
因此函数y=f(x)的图像关于x=2对称.又f(2)=f(6)=f(10)=2.要使方程f(x)=logax有三个不同的实根.
由函数的图像(如图),必须有即解之得0.若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是________.
解析 (1)当x>0时,f(x)=3x-1有一个零点x=.
因此当x≤0时,f(x)=ex+a=0只有一个实根,
∴a=-ex(x≤0),则-1≤a<0.
(2)在同一坐标系中,作y=f(x)与y=b的图像.当x>m时,x2-2mx+4m=(x-m)2+4m-m2,
∴要使方程f(x)=b有三个不同的根,则有4m-m20.又m>0,解得m>3.
答案 (1)D (2)(3,+∞)
考点四 构建函数模型解决实际问题(易错警示)
【例4】 (1)(2016·四川卷)
某公司为激励创新,计划逐年加大研发资金投入,若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)( )
A.2018年 B.2019年 C.2020年 D.2021年
(2)(2017·河南省实验中学期中)为了降低能源损耗,某体育馆的外墙需要建造隔热层,体育馆要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10,k为常数),若不建隔热层,每年能源消耗费用为8万元,设f(x)为隔热层建造费用与20年的能源消耗费用之和.
①求k的值及f(x)的表达式;
②隔热层修建多厚时,总费用f(x)达到最小?并求最小值.
(1)解析 设2015年后的第n年该公司投入的研发资金为y万元,则y=130(1+12%)n.
依题意130(1+12%)n>200,得1.12n>.
两边取对数,得n·lg1.12>lg 2-lg 1.3
∴n>≈=,∴n≥4,∴从2019年开始,该公司投入的研发资金开始超过200万元.
答案 B
(2)解 ①当x=0时,C=8,∴k=40,
∴C(x)=(0≤x≤10),
∴f(x)=6x+=6x+(0≤x≤10).
②由①得f(x)=2(3x+5)+-10.
令3x+5=t,t∈[5,35],
则y=2t+-10,∴y′=2-,
当5≤t<20时,y′<0,y=2t+-10为减函数;
当200,y=2t+-10为增函数.
∴函数y=2t+-10在t=20时取得最小值,此时x=5,
因此f(x)的最小值为70.∴隔热层修建5 cm厚时,总费用f(x)达到最小,最小值为70万元.
规律方法 (1)构建函数模型解决实际问题的常见类型与求解方法:
①构建二次函数模型,常用配方法、数形结合、分类讨论思想求解.
②构建分段函数模型,应用分段函数分段求解的方法.
③构建f(x)=x+(a>0)模型,常用基本不等式、导数等知识求解.
(2)解函数应用题的程序是:①审题;②建模;③解模;④还原.
易错警示 求解过程中不要忽视实际问题是对自变量的限制.
【训练4】 (1)(2017·成都调研)某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=ekx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是________小时.
(2)某旅游景点预计2017年1月份起前x个月的旅游人数的和p(x)(单位:万人)与x的关系近似地满足p(x)=x(x+1)(39-2x)(x∈N+,且x≤12).已知第x个月的人均消费额q(x)(单位:元)与x的近似关系是q(x)=
①写出2017年第x个月的旅游人数f(x)(单位:万人)与x的函数关系式;
②试问2017年第几个月旅游消费总额最大?最大月旅游消费总额为多少元?
(1)解析 由已知条件,得192=eb
又48=e22k+b=eb·(e11k)2
∴e11k===,
设该食品在33 ℃的保鲜时间是t小时,则t=e33k+b=192 e33k=192(e11k)3=192×3=24.
答案 24
(2)解 ①当x=1时,f(1)=p(1)=37,
当2≤x≤12,且x∈N+时,f(x)=p(x)-p(x-1)
=x(x+1)(39-2x)-(x-1)x(41-2x)=-3x2+40x,验证x=1也满足此式,
所以f(x)=-3x2+40x(x∈N+,且1≤x≤12).
②第x个月旅游消费总额为
g(x)=
即g(x)=
(ⅰ)当1≤x≤6,且x∈N+时,
g′(x)=18x2-370x+1 400,
令g′(x)=0,解得x=5或x=(舍去).
当1≤x<5时,g′(x)>0,
当50,
∴f(-1)·f(0)<0.则f(x)在(-1,0)内有零点.
答案 D
2.已知函数f(x)=则函数f(x)的零点为( )
A.,0 B.-2,0
C. D.0
解析 当x≤1时,由f(x)=2x-1=0,解得x=0;当x>1时,由f(x)=1+log2x=0,解得x=,又因为x>1,所以此时方程无解.综上函数f(x)的零点只有0.
答案 D
3.函数f(x)=2x--a的一个零点在区间(1,2)内,则实数a的取值范围是( )
A.(1,3) B.(1,2)
C.(0,3) D.(0,2)
解析 因为函数f(x)=2x--a在区间(1,2)上单调递增,又函数f(x)=2x--a的一个零点在区间(1,2)内,则有f(1)·f(2)<0,所以(-a)(4-1-a)<0,即a(a-3)<0,所以01时,有交点,即函数g(x)=f(x)+x-m有零点.
答案 D
12.(2017·合肥质检)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )
A.3.50分钟 B.3.75分钟
C.4.00分钟 D.4.25分钟
解析 根据图表,把(t,p)的三组数据(3,0.7),(4,0.8),(5,0.5)分别代入函数关系式,
联立方程组得
消去c化简得解得
所以p=-0.2t2+1.5t-2=-+-2=-2+,所以当t==3.75时,p取得最大值,即最佳加工时间为3.75分钟.
答案 B
13.(2015·湖南卷)若函数f(x)=|2x-2|-b有两个零点,则实数b的取值范围是________.
解析
由f(x)=|2x-2|-b=0,得|2x-2|=b.在同一平面直角坐标系中画出y=|2x-2|与y=b的图像,如图所示.
则当00).
(1)作出函数f(x)的图像;
(2)当0