- 4.34 MB
- 2022-03-30 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
【备战2013】高考物理5年高考真题精选与最新模拟专题08磁场【2012高考真题精选】(2012•重庆)如图所示,正方形区域MNPQ内有垂直纸面向里的匀强磁场.在外力作用下,一正方形闭合刚性导线框沿QN方向匀速运动,t=0时刻,其四个顶点M′、N′、P′、Q′恰好在磁场边界中点.下列图象中能反映线框所受安培力f的大小随时间t变化规律的是( )A B C D 乙丙【考点定位】磁场(2012·广东)15.质量和电量都相等的带电粒子M和N,以不同的速度率经小孔S垂直进入匀强磁场,运行的半圆轨迹如图2种虚线所示,下列表述正确的是()A.M带负电,N带正电
B.M的速度率小于N的速率C.洛伦磁力对M、N做正功D.M的运行时间大于N的运行时间(2012·山东)20.如图所示,相距为L的两条足够长的光滑平行金属导轨与水平面的夹角为,上端接有定值电阻,匀强磁场垂直于导轨平面,磁感应强度为B。将质量为m的导体棒由静止释放,当速度达到时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率为P,导体棒最终以的速度匀速运动。导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g,下列选项正确的是()A.B.C.当导体棒速度达到时加速度为D.在速度达到以后匀速运动的过程中,R上产生的焦耳热等于拉力所做的功【答案】AC
(2012·安徽)19.如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度从点沿直径方向射入磁场,经过时间从点射出磁场,与成60°角。现将带电粒子的速度变为/3,仍从点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间变为()A.B.2C.D.3【答案】B【解析】第一次偏转的偏向角为600,所以圆心角也是600,周期,与速度无关;OA长为R1,O2A长为R2,,,,则,所以第二次在磁场中偏转的圆心角为1200,所以偏转时间是第一次的2倍。
【考点定位】磁场(2012·大纲版全国卷)18.如图,两根互相平行的长直导线过纸面上的M、N两点,且与直面垂直,导线中通有大小相等、方向相反的电流。a、o、b在M、N的连线上,o为MN的中点,c、d位于MN的中垂线上,且a、b、c、d到o点的距离均相等。关于以上几点处的磁场,下列说法正确的是A.o点处的磁感应强度为零B.a、b两点处的磁感应强度大小相等,方向相反C.c、d两点处的磁感应强度大小相等,方向相同D.a、c两点处磁感应强度的方向不同(2012·大纲版全国卷)17.质量分别为m1和m2、电荷量分别为q1和q2的两粒子在同一匀强磁场中做匀速圆周运动,已知两粒子的动量大小相等。下列说法正确的是A.若q1=q2,则它们做圆周运动的半径一定相等B.若m1=m2,则它们做圆周运动的周期一定相等C.若q1≠q2,则它们做圆周运动的半径一定不相等D.若m1≠m2,则它们做圆周运动的周期一定不相等
(2012·物理)如图,在两水平极板间存在匀强电场和匀强磁场,电场方向竖直向下,磁场方向垂直于纸面向里。一带电粒子以某一速度沿水平直线通过两极板。若不计重力,下列四个物理量中哪一个改变时,粒子运动轨迹不会改变?A.粒子速度的大小B.粒子所带电荷量C.电场强度D.磁感应强度【答案】B【解析】带电粒子以某一速度沿水平直线通过两极板,有qvB=qE。所以粒子所带电荷量改变,粒子运动轨迹不会改变,选项B正确。【考点定位】此题考查带电粒子在电场磁场中的直线运动。(2012·江苏)9.如图所示,MN是磁感应强度为B的匀强磁场的边界.一质量为m、电荷量为q的粒子在纸面内从O点射入磁场.若粒子速度为v0,最远能落在边界上的A点.下列说法正确的有
(A)若粒子落在A点的左侧,其速度一定小于v0(B)若粒子落在A点的右侧,其速度一定大于v0(C)若粒子落在A点左右两侧d的范围内,其速度不可能小于v0-qBd/2m(D)若粒子落在A点左右两侧d的范围内,其速度不可能大于v0+qBd/2m(2012·天津)2.如图所示,金属棒MN两端由等长的轻质细线水平悬挂,处于竖直向上的匀强磁场中,棒中通以由M向N的电流,平衡时两悬线与竖直方向夹角均为θ。如果仅改变下列某一个条件,θ角的相应变化情况是A.棒中的电流变大,θ角变大B.两悬线等长变短,θ角变小C.金属棒质量变大,θ角变大D.磁感应强度变大,θ角变小
(2012·四川)20.半径为a右端开小口的导体圆环和长为2a的导体直杆,单位长度电阻均为R0。圆环水平固定放置,整个内部区域分布着向下的匀强磁场,磁感应强度为B。杆在圆环上以速度v平行于直径CD向右做匀速直线运动,杆始终有两点与圆环良好接触,从圆环中心O开始,杆的位置由θ确定,如图所示。则A.θ=0时,杆产生的电动势为2BavB.θ=时,杆产生的电动势为BavC.θ=0时,杆受的安培力大小为D.θ=时,杆受的安培力大小为【答案】AD
【解析】θ=0时,杆切割磁感线的有效长度为2a,由E=B2av得,杆产生的电动势为2Bav,A正确。θ=时,杆切割磁感线的有效长度为a,由E=Bav得,杆产生的电动势为Bav,B错误。θ=0时,回路的电阻为,电流I==,杆受的安培力大小为F=BI2a=,C错误。θ=时,回路的电阻为,电流I==,杆受的安培力大小为F=BIa=,D正确。【考点定位】本题考查电磁感应。法拉第电磁感应定律,安培力,闭合电路欧姆定律,电阻定律。(2012·全国新课标卷)20.如图,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行。已知在t=0到t=t1的时间间隔内,直导线中电流i发生某种变化,而线框中感应电流总是沿顺时针方向;线框受到的安培力的合力先水平向左、后水平向右。设电流i正方向与图中箭头方向相同,则i随时间t变化的图线可能是
A正确,选项B、C、D错误。【考点定位】本考点主要考查对楞次定律的理解和应用(2012·江苏)13.(15分)某兴趣小组设计了一种发电装置,如图所示.在磁极和圆柱状铁芯之间形成的两磁场区域的圆心角琢均为49仔,磁场均沿半径方向.匝数为N的矩形线圈abcd的边长ab=cd=、bc=ad=2.线圈以角速度棕绕中心轴匀速转动,bc和ad边同时进入磁场.在磁场中,两条边所经过处的磁感应强度大小均为B、方向始终与两边的运动方向垂直.线圈的总电阻为r,外接电阻为R.求:(1)线圈切割磁感线时,感应电动势的大小Em;
(2)线圈切割磁感线时,bc边所受安培力的大小F;(3)外接电阻上电流的有效值I.16.(2012·海南)图(a)所示的xOy平面处于匀强磁场中,磁场方向与xOy平面(纸面)垂直,磁感应强度B随时间t变化的周期为T,变化图线如图(b)所示。当B为+B0时,磁感应强度方向指向纸外。在坐标原点O有一带正电的粒子P,其电荷量与质量之比恰好等于。不计重力。设P在某时刻t0以某一初速度沿y轴正方向自O点开始运动,将它经过时间T到达的点记为A。(1)若t0=0,则直线OA与x轴的夹角是多少?(2)若t0=T/4,则直线OA与x轴的夹角是多少?(3)为了使直线OA与x轴的夹角为π/4,在0Q2D.v1=v2,Q10)的粒子从P点瞄准N0点入射,最后又通过P点。不计重力。求粒子入射速度的所有可能值。解析:设粒子的入射速度为v,第一次射出磁场的点为,与板碰撞后再次进入磁场的位置为.粒子在磁场中运动的轨道半径为R,有…⑴
粒子速率不变,每次进入磁场与射出磁场位置间距离保持不变有…⑵粒子射出磁场与下一次进入磁场位置间的距离始终不变,与相等.由图可以看出……⑶设粒子最终离开磁场时,与档板相碰n次(n=0、1、2、3…).若粒子能回到P点,由对称性,出射点的x坐标应为-a,即……⑷由⑶⑷两式得……⑸若粒子与挡板发生碰撞,有……⑹联立⑶⑷⑹得n<3………⑺联立⑴⑵⑸得………⑻把代入⑻中得…………⑼…………⑾…………⑿(09年全国卷Ⅱ)25.(18分)如图,在宽度分别为和的两个毗邻的条形区域分别有匀强磁场和匀强电场,磁场方向垂直于纸面向里,电场方向与电、磁场分界线平行向右。一带正电荷的粒子以速率v从磁场区域上边界的P点斜射入磁场,然后以垂直于电、磁场分界线的方向进入电场,最后从电场边界上的Q点射出。已知PQ垂直于电场方向,粒子轨迹与电、磁场分界线的交点到PQ的距离为d。不计重力,求电场强度与磁感应强度大小之比及粒子在磁场与电场中运动时间之比。
答案:解析:本题考查带电粒子在有界磁场中的运动。粒子在磁场中做匀速圆周运动,如图所示.由于粒子在分界线处的速度与分界线垂直,圆心O应在分界线上,OP长度即为粒子运动的圆弧的半径R.由几何关系得………①设粒子的质量和所带正电荷分别为m和q,由洛仑兹力公式和牛顿第二定律得……………②设为虚线与分界线的交点,,则粒子在磁场中的运动时间为……③式中有………④粒子进入电场后做类平抛运动,其初速度为v,方向垂直于电场.设粒子的加速度大小为a,由牛顿第二定律得…………⑤由运动学公式有……⑥………⑦由①②⑤⑥⑦式得…………⑧
由①③④⑦式得(09年天津卷)11.(18分)如图所示,直角坐标系xOy位于竖直平面内,在水平的x轴下方存在匀强磁场和匀强电场,磁场的磁感应为B,方向垂直xOy平面向里,电场线平行于y轴。一质量为m、电荷量为q的带正电的小球,从y轴上的A点水平向右抛出,经x轴上的M点进入电场和磁场,恰能做匀速圆周运动,从x轴上的N点第一次离开电场和磁场,MN之间的距离为L,小球过M点时的速度方向与x轴的方向夹角为.不计空气阻力,重力加速度为g,求(1)电场强度E的大小和方向;(2)小球从A点抛出时初速度v0的大小;(3)A点到x轴的高度h.答案:(1),方向竖直向上(2)(3)解析:本题考查平抛运动和带电小球在复合场中的运动。(1)小球在电场、磁场中恰能做匀速圆周运动,说明电场力和重力平衡(恒力不能充当圆周运动的向心力),有①②重力的方向竖直向下,电场力方向只能向上,由于小球带正电,所以电场强度方向竖直向上。(2)小球做匀速圆周运动,O′为圆心,MN为弦长,,如图所示。设半径为r,由几何关系知③小球做匀速圆周运动的向心力由洛仑兹力白日提供,设小球做圆周运动的速率为v,有④由速度的合成与分解知
⑤由③④⑤式得⑥(3)设小球到M点时的竖直分速度为vy,它与水平分速度的关系为⑦由匀变速直线运动规律⑧由⑥⑦⑧式得⑨(09年山东卷)25.(18分)如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里。位于极板左侧的粒子源沿x轴间右连接发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t时间内两板间加上如图乙所示的电压(不考虑极边缘的影响)。已知t=0时刻进入两板间的带电粒子恰好在t0时,刻经极板边缘射入磁场。上述m、q、l、l0、B为已知量。(不考虑粒子间相互影响及返回板间的情况)(1)求电压U的大小。(2)求时进入两板间的带电粒子在磁场中做圆周运动的半径。(3)何时把两板间的带电粒子在磁场中的运动时间最短?求此最短时间。图乙图甲解析:(1)时刻进入两极板的带电粒子在电场中做匀变速曲线运动,
时刻刚好从极板边缘射出,在y轴负方向偏移的距离为,则有①②③联立以上三式,解得两极板间偏转电压为④。(2)时刻进入两极板的带电粒子,前时间在电场中偏转,后时间两极板没有电场,带电粒子做匀速直线运动。带电粒子沿x轴方向的分速度大小为⑤带电粒子离开电场时沿y轴负方向的分速度大小为⑥带电粒子离开电场时的速度大小为⑦设带电粒子离开电场进入磁场做匀速圆周运动的半径为R,则有⑧联立③⑤⑥⑦⑧式解得⑨。(09年福建卷)22.(20分)图为可测定比荷的某装置的简化示意图,在第一象限区域内有垂直于纸面向里的匀强磁场,磁感应强度大小B=2.0×10-3T,在X轴上距坐标原点L=0.50m
的P处为离子的入射口,在Y上安放接收器,现将一带正电荷的粒子以v=3.5×104m/s的速率从P处射入磁场,若粒子在y轴上距坐标原点L=0.50m的M处被观测到,且运动轨迹半径恰好最小,设带电粒子的质量为m,电量为q,不记其重力。(1)求上述粒子的比荷;(2)如果在上述粒子运动过程中的某个时刻,在第一象限内再加一个匀强电场,就可以使其沿y轴正方向做匀速直线运动,求该匀强电场的场强大小和方向,并求出从粒子射入磁场开始计时经过多长时间加这个匀强电场;(3)为了在M处观测到按题设条件运动的上述粒子,在第一象限内的磁场可以局限在一个矩形区域内,求此矩形磁场区域的最小面积,并在图中画出该矩形。答案(1)=4.9×C/kg(或5.0×C/kg);(2);(3)解析:第(1)问本题考查带电粒子在磁场中的运动。第(2)问涉及到复合场(速度选择器模型)第(3)问是带电粒子在有界磁场(矩形区域)中的运动。(1)设粒子在磁场中的运动半径为r。如图甲,依题意M、P连线即为该粒子在磁场中作匀速圆周运动的直径,由几何关系得①由洛伦兹力提供粒子在磁场中作匀速圆周运动的向心力,可得
②联立①②并代入数据得=4.9×C/kg(或5.0×C/kg)③(2)设所加电场的场强大小为E。如图乙,当粒子子经过Q点时,速度沿y轴正方向,依题意,在此时加入沿x轴正方向的匀强电场,电场力与此时洛伦兹力平衡,则有④代入数据得⑤所加电场的长枪方向沿x轴正方向。由几何关系可知,圆弧PQ所对应的圆心角为45°,设带点粒子做匀速圆周运动的周期为T,所求时间为t,则有⑥⑦联立①⑥⑦并代入数据得⑧(3)如图丙,所求的最小矩形是,该区域面积⑨联立①⑨并代入数据得矩形如图丙中(虚线)
(09年浙江卷)25.(22分)如图所示,x轴正方向水平向右,y轴正方向竖直向上。在xOy平面内有与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场。在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒。发射时,这束带电微粒分布在00。解析:本题考查带电粒子在复合场中的运动。带电粒子平行于x轴从C点进入磁场,说明带电微粒所受重力和电场力平衡。设电场强度大小为E,由可得方向沿y轴正方向。带电微粒进入磁场后,将做圆周运动。且r=R如图(a)所示,设磁感应强度大小为B。由
得方向垂直于纸面向外(09年江苏卷)14.(16分)1932年,劳伦斯和利文斯设计出了回旋加速器。回旋加速器的工作原理如图所示,置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计。磁感应强度为B的匀强磁场与盒面垂直。A处粒子源产生的粒子,质量为m、电荷量为+q
,在加速器中被加速,加速电压为U。加速过程中不考虑相对论效应和重力作用。(1)求粒子第2次和第1次经过两D形盒间狭缝后轨道半径之比;(2)求粒子从静止开始加速到出口处所需的时间t;(3)实际使用中,磁感应强度和加速电场频率都有最大值的限制。若某一加速器磁感应强度和加速电场频率的最大值分别为Bm、fm,试讨论粒子能获得的最大动能E㎞。解析:(1)设粒子第1次经过狭缝后的半径为r1,速度为v1qu=mv12qv1B=m解得同理,粒子第2次经过狭缝后的半径则(2)设粒子到出口处被加速了n圈
(09年江苏物理)15.(16分)如图所示,两平行的光滑金属导轨安装在一光滑绝缘斜面上,导轨间距为l、足够长且电阻忽略不计,导轨平面的倾角为,条形匀强磁场的宽度为d,磁感应强度大小为B、方向与导轨平面垂直。长度为2d的绝缘杆将导体棒和正方形的单匝线框连接在一起组成“”型装置,总质量为m,置于导轨上。导体棒中通以大小恒为I的电流(由外接恒流源产生,图中未图出)。线框的边长为d(d