高中物理解题(微元法) 14页

  • 3.43 MB
  • 2022-03-30 发布

高中物理解题(微元法)

  • 14页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
高中奥林匹克物理竞赛解题方法微元法方法简介微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。使用此方法会加强我们对已知规律的再思考,从而引起巩固知识、加深认识和提高能力的作用。赛题精讲例1:如图3—1所示,一个身高为h的人在灯以悟空速度v沿水平直线行走。设灯距地面高为H,求证人影的顶端C点是做匀速直线运动。解析:该题不能用速度分解求解,考虑采用“微元法”。设某一时间人经过AB处,再经过一微小过程△t(△t→0),则人由AB到达A′B′,人影顶端C点到达C′点,由于△SAA′=v△t则人影顶端的移动速度可见vc与所取时间△t的长短无关,所以人影的顶端C点做匀速直线运动.例2:如图3—2所示,一个半径为R的四分之一光滑球面放在水平桌面上,球面上放置一光滑均匀铁链,其A端固定在球面的顶点,B端恰与桌面不接触,铁链单位长度的质量为ρ.试求铁链A端受的拉力T.解析:以铁链为研究对象,由由于整条铁链的长度不能忽略不计,所以整条铁链不能看成质点,要分析铁链的受力情况,须考虑将铁链分割,使每一小段铁链可以看成质点,分析每一小段铁边的受力,根据物体的平衡条件得出整条铁链的受力情况.在铁链上任取长为△L的一小段(微元)为研究对象,其受力分析如图3—2—甲所示.由于该元处于静止状态,所以受力平衡,在切线方向上应满足: 由于每段铁链沿切线向上的拉力比沿切线向下的拉力大△Tθ,所以整个铁链对A端的拉力是各段上△Tθ的和,即观察的意义,见图3—2—乙,由于△θ很小,所以CD⊥OC,∠OCE=θ△Lcosθ表示△L在竖直方向上的投影△R,所以可得铁链A端受的拉力例3:某行星围绕太阳C沿圆弧轨道运行,它的近日点A离太阳的距离为a,行星经过近日点A时的速度为,行星的远日点B离开太阳的距离为b,如图3—3所示,求它经过远日点B时的速度的大小.解析:此题可根据万有引力提供行星的向心力求解.也可根据开普勒第二定律,用微元法求解.设行星在近日点A时又向前运动了极短的时间△t,由于时间极短可以认为行星在△t时间内做匀速圆周运动,线速度为,半径为a,可以得到行星在△t时间内扫过的面积同理,设行星在经过远日点B时也运动了相同的极短时间△t,则也有由开普勒第二定律可知:Sa=Sb即得此题也可用对称法求解.例4:如图3—4所示,长为L的船静止在平静的水面上,立于船头的人质量为m,船的质量为M,不计水的阻力,人从船头走到船尾的过程中,问:船的位移为多大?解析:取人和船整体作为研究系统,人在走动过程中,系统所受合外力为零,可知系统动量守恒.设人在走动过程中的△t时间内为匀速运动,则可计算出船的位移.设v1、v2分别是人和船在任何一时刻的速率,则有①两边同时乘以一个极短的时间△t,有②由于时间极短,可以认为在这极短的时间内人和船的速率是不变的,所以人和船位移大小分别为,由此将②式化为③ 把所有的元位移分别相加有④即ms1=Ms2⑤此式即为质心不变原理.其中s1、s2分别为全过程中人和船对地位移的大小,又因为L=s1+s2⑥由⑤、⑥两式得船的位移例5:半径为R的光滑球固定在水平桌面上,有一质量为M的圆环状均匀弹性绳圈,原长为πR,且弹性绳圈的劲度系数为k,将弹性绳圈从球的正上方轻放到球上,使弹性绳圈水平停留在平衡位置上,如图3—5所示,若平衡时弹性绳圈长为,求弹性绳圈的劲度系数k.解析:由于整个弹性绳圈的大小不能忽略不计,弹性绳圈不能看成质点,所以应将弹性绳圈分割成许多小段,其中每一小段△m两端受的拉力就是弹性绳圈内部的弹力F.在弹性绳圈上任取一小段质量为△m作为研究对象,进行受力分析.但是△m受的力不在同一平面内,可以从一个合适的角度观察.选取一个合适的平面进行受力分析,这样可以看清楚各个力之间的关系.从正面和上面观察,分别画出正视图的俯视图,如图3—5—甲和2—3—5—乙.先看俯视图3—5—甲,设在弹性绳圈的平面上,△m所对的圆心角是△θ,则每一小段的质量△m在该平面上受拉力F的作用,合力为因为当θ很小时,所以再看正视图3—5—乙,△m受重力△mg,支持力N,二力的合力与T平衡.即现在弹性绳圈的半径为所以因此T=①、②联立,,解得弹性绳圈的张力为: 设弹性绳圈的伸长量为x则所以绳圈的劲度系数为:例6:一质量为M、均匀分布的圆环,其半径为r,几何轴与水平面垂直,若它能经受的最大张力为T,求此圆环可以绕几何轴旋转的最大角速度.解析:因为向心力F=mrω2,当ω一定时,r越大,向心力越大,所以要想求最大张力T所对应的角速度ω,r应取最大值.如图3—6所示,在圆环上取一小段△L,对应的圆心角为△θ,其质量可表示为,受圆环对它的张力为T,则同上例分析可得因为△θ很小,所以,即解得最大角速度例7:一根质量为M,长度为L的铁链条,被竖直地悬挂起来,其最低端刚好与水平接触,今将链条由静止释放,让它落到地面上,如图3—7所示,求链条下落了长度x时,链条对地面的压力为多大?解析:在下落过程中链条作用于地面的压力实质就是链条对地面的“冲力”加上落在地面上那部分链条的重力.根据牛顿第三定律,这个冲力也就等于同一时刻地面对链条的反作用力,这个力的冲量,使得链条落至地面时的动量发生变化.由于各质元原来的高度不同,落到地面的速度不同,动量改变也不相同.我们取某一时刻一小段链条(微元)作为研究对象,就可以将变速冲击变为恒速冲击.设开始下落的时刻t=0,在t时刻落在地面上的链条长为x,未到达地面部分链条的速度为v,并设链条的线密度为ρ.由题意可知,链条落至地面后,速度立即变为零.从t时刻起取很小一段时间△t,在△t内又有△M=ρ△x落到地面上静止.地面对△M作用的冲量为因为所以解得冲力:,其中就是t时刻链条的速度v,故链条在t时刻的速度v即为链条下落 长为x时的即时速度,即v2=2gx,代入F的表达式中,得此即t时刻链对地面的作用力,也就是t时刻链条对地面的冲力.所以在t时刻链条对地面的总压力为例8:一根均匀柔软的绳长为L,质量为m,对折后两端固定在一个钉子上,其中一端突然从钉子上滑落,试求滑落的绳端点离钉子的距离为x时,钉子对绳子另一端的作用力是多大?解析:钉子对绳子另一端的作用力随滑落绳的长短而变化,由此可用微元法求解.如图3—8所示,当左边绳端离钉子的距离为x时,左边绳长为,速度,右边绳长为又经过一段很短的时间△t以后,左边绳子又有长度的一小段转移到右边去了,我们就分析这一小段绳子,这一小段绳子受到两力:上面绳子对它的拉力T和它本身的重力为绳子的线密度),根据动量定理,设向上方向为正由于△t取得很小,因此这一小段绳子的重力相对于T来说是很小的,可以忽略,所以有因此钉子对右边绳端的作用力为例9:图3—9中,半径为R的圆盘固定不可转动,细绳不可伸长但质量可忽略,绳下悬挂的两物体质量分别为M、m.设圆盘与绳间光滑接触,试求盘对绳的法向支持力线密度.解析:求盘对绳的法向支持力线密度也就是求盘对绳的法向单位长度所受的支持力.因为盘与绳间光滑接触,则任取一小段绳,其两端受的张力大小相等,又因为绳上各点受的支持力方向不同,故不能以整条绳为研究对象,只能以一小段绳为研究对象分析求解.在与圆盘接触的半圆形中取一小段绳元△L,△L所对应的圆心角为△θ,如图3—9—甲所示,绳元△L两端的张力均为T,绳元所受圆盘法向支持力为△N,因细绳质量可忽略,法向合力为零,则由平衡条件得: 当△θ很小时,∴△N=T△θ又因为△L=R△θ则绳所受法向支持力线密度为①以M、m分别为研究对象,根据牛顿定律有Mg-T=Ma②T-mg=ma③由②、③解得:将④式代入①式得:例10:粗细均匀质量分布也均匀的半径为分别为R和r的两圆环相切.若在切点放一质点m,恰使两边圆环对m的万有引力的合力为零,则大小圆环的线密度必须满足什么条件?解析:若要直接求整个圆对质点m的万有引力比较难,当若要用到圆的对称性及要求所受合力为零的条件,考虑大、小圆环上关于切点对称的微元与质量m的相互作用,然后推及整个圆环即可求解.如图3—10所示,过切点作直线交大小圆分别于P、Q两点,并设与水平线夹角为α,当α有微小增量时,则大小圆环上对应微小线元其对应的质量分别为由于△α很小,故△m1、△m2与m的距离可以认为分别是所以△m1、△m2与m的万有引力分别为由于α具有任意性,若△F1与△F2的合力为零, 则两圆环对m的引力的合力也为零,即解得大小圆环的线密度之比为:例11:一枚质量为M的火箭,依靠向正下方喷气在空中保持静止,如果喷出气体的速度为v,那么火箭发动机的功率是多少? 解析:火箭喷气时,要对气体做功,取一个很短的时间,求出此时间内,火箭对气体做的功,再代入功率的定义式即可求出火箭发动机的功率.选取在△t时间内喷出的气体为研究对象,设火箭推气体的力为F,根据动量定理,有F△t=△m·v因为火箭静止在空中,所以根据牛顿第三定律和平衡条件有F=Mg即Mg·△t=△m·v△t=△m·v/Mg对同样这一部分气体用动能定理,火箭对它做的功为:所以发动机的功率例12:如图3—11所示,小环O和O′分别套在不动的竖直杆AB和A′B′上,一根不可伸长的绳子穿过环O′,绳的两端分别系在A′点和O环上,设环O′以恒定速度v向下运动,求当∠AOO′=α时,环O的速度.解析:O、O′之间的速度关系与O、O′的位置有关,即与α角有关,因此要用微元法找它们之间的速度关系.设经历一段极短时间△t,O′环移到C′,O环移到C,自C′与C分别作为O′O的垂线C′D′和CD,从图中看出.因此OC+O′C′=①因△α极小,所以EC′≈ED′,EC≈ED,从而OD+O′D′≈OO′-CC′②由于绳子总长度不变,故OO′-CC′=O′C′③由以上三式可得:OC+O′C′=即等式两边同除以△t得环O的速度为例13:在水平位置的洁净的平玻璃板上倒一些水银,由于重力和表面张力的影响,水银近似呈现圆饼形状(侧面向外凸出),过圆饼轴线的竖直截面如图3—12所示,为了计算方便,水银和玻璃的接触角可按180°计算.已知水银密度,水银的表面张力系数当圆饼的半径很大时,试估算其厚度h的数值大约为多少?(取1位有效数字即可)解析:若以整个圆饼状水银为研究对象,只受重力和玻璃板的支持力,在平衡方程中,液体的体积不是h的简单函数,而且支持力N和重力mg都是未知量,方程中又不可能出现表面张力系数,因此不可能用整体分析列方程求解h.现用微元法求解. 在圆饼的侧面取一个宽度为△x,高为h的体积元,,如图3—12—甲所示,该体积元受重力G、液体内部作用在面积△x·h上的压力F,,还有上表面分界线上的张力F1=σ△x和下表面分界线上的张力F2=σ△x.作用在前、后两个侧面上的液体压力互相平衡,作用在体积元表面两个弯曲分界上的表面张力的合力,当体积元的宽度较小时,这两个力也是平衡的,图中都未画出.由力的平衡条件有:即解得:由于故2.7×10-3m>m,碰撞弹力N>>g,球与车之间的动摩擦因数为μ,则小球弹起后的水平速度可能是()A.B.0C.D.v06.半径为R的刚性球固定在水平桌面上.有一质量为M的圆环状均匀弹性细绳圈,原长2πa,a=R/2,绳圈的弹性系数为k(绳伸长s时,绳中弹性张力为ks).将绳圈从球的正上方轻放到球上,并用手扶着绳圈使其保持水平,并最后停留在某个静力平衡位置.考虑重力,忽略摩擦.(1)设平衡时弹性绳圈长2πb,b=,求弹性系数k;(用M、R、g表示,g为重力加速度)(2)设k=Mg/2π2R,求绳圈的最后平衡位置及长度.7.一截面呈圆形的细管被弯成大圆环,并固定在竖直平面内,在环内的环底A处有一质量为m、直径比管径略小的小球,小球上连有一根穿过环顶B处管口的轻绳,在外力F作用下小球以恒定速度v沿管壁做半径为R的匀速圆周运动,如图3—23所示.已知小球与管内壁中位于大环外侧部分的动摩擦因数为μ,而大环内侧部分的管内壁是光滑的.忽略大环内、外侧半径的差别,认为均为R.试求小球从A点运动到B点过程中F做的功WF.8.如图3—24,来自质子源的质子(初速度为零),经一加速电压为800kV的直线加速器加速,形成电流为1.0mA的细柱形质子流.已知质子电荷e=1.60×10-19C.这束质子流每秒打到靶上的质子数为.假设分布在质子源 到靶之间的加速电场是均匀的,在质子束中与质子源相距l和4l的两处,各取一段极短的相等长度的质子流,其中质子数分别为n1和n2,则n1:n2.9.如图3—25所示,电量Q均匀分布在一个半径为R的细圆环上,求圆环轴上与环心相距为x的点电荷q所受的力的大小.10.如图3—26所示,一根均匀带电细线,总电量为Q,弯成半径为R的缺口圆环,在细线的两端处留有很小的长为△L的空隙,求圆环中心处的场强.11.如图3—27所示,两根均匀带电的半无穷长平行直导线(它们的电荷线密度为η),端点联线LN垂直于这两直导线,如图所示.LN的长度为2R.试求在LN的中点O处的电场强度.12.如图3—28所示,有一均匀带电的无穷长直导线,其电荷线密度为η.试求空间任意一点的电场强度.该点与直导线间垂直距离为r.13.如图3—29所示,半径为R的均匀带电半球面,电荷面密度为δ,求球心O处的电场强度.14.如图3—30所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个边长为a(a