• 201.28 KB
  • 2021-05-22 发布

【物理】2020届一轮复习人教版竖直平面内(斜面内)的圆周运动作业

  • 9页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2020届一轮复习人教版 竖直平面内(斜面内)的圆周运动 作业 ‎1. 如图所示,乘坐游乐园的翻滚过山车时,质量为m的人随车在竖直平面内旋转,下列说法正确的是(  )‎ A.过山车在最高点时人处于倒坐状态,全靠保险带拉住,没有保险带,人就会掉下来 B.人在最高点时对座位不可能产生大小为mg的压力 C.人在最低点时对座位的压力等于mg D.人在最低点时对座位的压力大于mg 答案 D 解析 人过最高点时,FN+mg=m,当v≥时,不用保险带,人也不会掉下来,当v=时,人在最高点时对座位产生的压力为mg,A、B均错误;人在最低点具有竖直向上的加速度,处于超重状态,故人此时对座位的压力大于mg,C错误、D正确。‎ ‎2.(多选)“水流星”是一种常见的杂技项目,该运动可以简化为细绳一端系着小球在竖直平面内的圆周运动模型。已知绳长为l,重力加速度为g,则(  )‎ A.小球运动到最低点Q时,处于失重状态 B.小球初速度v0越大,则在P、Q两点绳对小球的拉力差越大 C.当v0>时,小球一定能通过最高点P D.当v0<时,细绳始终处于绷紧状态 答案 CD 解析 小球运动到最低点Q时,由于加速度向上,故处于超重状态,A错误;小球在最低点时:FT1-mg=m;在最高点时:FT2+mg=m,其中mv-mg·‎2l=mv2,解得FT1-FT2=6mg,故在P、Q两点绳对小球的拉力差与初速度v0无关,B错误;当v0=时,可求得v=,因为小球经过最高点的最小速度为,则当v0>时小球一定能通过最高点P,C正确;当v0=时,由mv=mgh得小球能上升的高度h=l,即小球不能越过与悬点等高的位置,故当v0<时,小球将在最低点位置附近来回摆动,细绳始终处于绷紧状态,D正确。‎ ‎3.如图所示,质量为M的物体内有光滑圆形轨道,现有一质量为m的小滑块沿该圆形轨道在竖直面内做圆周运动。A、C点为圆周的最高点和最低点,B、D点是与圆心O同一水平线上的点。小滑块运动时,物体在地面上静止不动,则物体对地面的压力FN和地面对物体的摩擦力有关说法正确的是(  )‎ A.小滑块在A点时,FN>Mg,摩擦力方向向左 B.小滑块在B点时,FN=Mg,摩擦力方向向右 C.小滑块在C点时,FN=(M+m)g,M与地面无摩擦 D.小滑块在D点时,FN=(M+m)g,摩擦力方向向左 答案 B 解析 因为轨道光滑,所以小滑块与轨道之间没有摩擦力。小滑块在A点时,与轨道没有水平方向的作用力,所以轨道没有运动趋势,即摩擦力为零;当小滑块的速度v=时,对轨道A点的压力为零,物体对地面的压力FN=Mg ‎,当小滑块的速度v>时,对轨道A点的压力向上,物体对地面的压力FN(M+m)g,故C错误;小滑块在D点时,类似于B点的分析,地面给物体向左的摩擦力,物体对地面的压力FN=Mg,故D错误。‎ ‎4. 如图所示,竖直环A的半径为r,固定在木板B上,木板B放在水平地面上,B的左右两侧各有一挡板固定在地上,B不能左右运动,在环的最低点静放一小球C,A、B、C的质量均为m。现给小球一水平向右的瞬时速度v,小球会在环内侧做圆周运动,为保证小球能通过环的最高点,且不会使环在竖直方向上跳起(不计小球与环之间的摩擦阻力),则瞬时速度v必须满足(  )‎ A.最小值 B.最大值 C.最小值 D.最大值 答案 D 解析 要保证小球能通过环的最高点,在最高点最小速度满足mg=m,对小球从最低点运动到最高点的过程应用机械能守恒定律得mv=mg·2r+mv,可得小球在最低点瞬时速度的最小值为,A、C错误;为了不使环在竖直方向上跳起,则在最高点球有最大速度时,对环的压力为2mg,满足3mg=m,从最低点到最高点由机械能守恒定律得mv=mg·2r+mv,可得小球在最低点瞬时速度的最大值为,B错误,D正确。‎ ‎5.(多选)如图甲所示,轻杆一端固定在O 点,另一端固定一小球,现让小球在竖直平面内做半径为R的圆周运动。小球运动到最高点时,受到的弹力为F,速度大小为v,其Fv2图象如图乙所示。则(  )‎ A.小球的质量为 B.当地的重力加速度大小为 C.v2=c时,小球对杆的弹力方向向下 D.v2=2b时,小球受到的弹力与重力大小相等 答案 AD 解析 由题图乙可知:当v2=b时,杆对球的弹力恰好为零,此时只受重力,重力提供向心力,mg=m=m,即重力加速度 g=,故B错误;当v2=0时,向心力为零,杆对球的弹力恰好与球的重力等大反向,F弹=mg=a,即小球的质量m==,故A正确;根据圆周运动的规律,当v2=b时杆对球的弹力为零,当v2b时,mg+F弹=m,杆对球的弹力方向向下,v2=c>b,杆对小球的弹力方向向下,根据牛顿第三定律,小球对杆的弹力方向向上,故C错误;当v2=2b时,mg+F弹=m=m,又g=,F弹=m-mg=mg,故D正确。‎ ‎[真题模拟练]‎ ‎6. (2015·天津高考)‎ 未来的星际航行中,宇航员长期处于零重力状态,为缓解这种状态带来的不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图所示,当旋转舱绕其轴线匀速旋转时,宇航员站在旋转舱内圆柱形侧壁上,可以受到与他站在地球表面时相同大小的支持力。为达到上述目的,下列说法正确的是(  )‎ A.旋转舱的半径越大,转动的角速度就应越大 B.旋转舱的半径越大,转动的角速度就应越小 C.宇航员质量越大,旋转舱的角速度就应越大 D.宇航员质量越大,旋转舱的角速度就应越小 答案 B 解析 旋转舱对宇航员的支持力提供宇航员做圆周运动的向心力,即mg=mω2r,解得ω= ,要使g不变,旋转舱的半径越大,角速度应越小,而且与宇航员的质量无关,B正确。‎ ‎7. (2017·江苏高考)如图所示,一小物块被夹子夹紧,夹子通过轻绳悬挂在小环上,小环套在水平光滑细杆上,物块质量为M,到小环的距离为L,其两侧面与夹子间的最大静摩擦力均为F。小环和物块以速度v向右匀速运动,小环碰到杆上的钉子P后立刻停止,物块向上摆动。整个过程中,物块在夹子中没有滑动。小环和夹子的质量均不计,重力加速度为g。下列说法正确的是(  )‎ A.物块向右匀速运动时,绳中的张力等于‎2F B.小环碰到钉子P时,绳中的张力大于‎2F C.物块上升的最大高度为 D.速度v不能超过 答案 D 解析 由题意知,F为夹子与物块间的最大静摩擦力,但在实际运动过程中,夹子与物块间的静摩擦力没有达到最大,故物块向右匀速运动时,绳中的张力等于Mg,A错误;小环碰到钉子时,物块做圆周运动,FT-Mg=M,绳中的张力大于物块的重力Mg,当绳中的张力大于‎2F时,物块将从夹子中滑出,即‎2F-Mg=M,此时速度v= ,故B错误,D正确;由机械能守恒定律知,物块能上升的最大高度h=,所以C错误。‎ ‎8. (2016·全国卷Ⅱ)小球P和Q用不可伸长的轻绳悬挂在天花板上,P球的质量大于Q球的质量,悬挂P球的绳比悬挂Q球的绳短。将两球拉起,使两绳均被水平拉直,如图所示。将两球由静止释放。在各自轨迹的最低点(  )‎ A.P球的速度一定大于Q球的速度 B.P球的动能一定小于Q球的动能 C.P球所受绳的拉力一定大于Q球所受绳的拉力 D.P球的向心加速度一定小于Q球的向心加速度 答案 C 解析 设小球的质量为m,绳长为L,根据动能定理得mgL=mv2,解得v=,LPmQ,LPmQ,所以P球所受绳的拉力大于Q球所受绳的拉力,故C项正确;向心加速度a==‎2g,所以在轨迹的最低点,P、Q两球的向心加速度相同,故D项错误。‎ ‎9. (2018·咸阳一模)固定在竖直平面内的光滑圆弧轨道ABCD,其A 点与圆心等高,D点为轨道的最高点,DB为竖直线,AC为水平线,AE为水平面,如图所示。今使小球自A点正上方某处由静止释放,且从A点进入圆弧轨道运动,只要适当调节释放点的高度,总能使球通过最高点D,则小球通过D点后(  )‎ A.一定会落到水平面AE上 B.一定会再次落到圆弧轨道上 C.可能会再次落到圆弧轨道上 D.不能确定 答案 A 解析 设小球恰好能够通过最高点D,根据mg=m,得:vD=,知在最高点的最小速度为。小球经过D点后做平抛运动,根据R=gt2得:t=。则平抛运动的水平位移为:x=·=R,知小球一定落在水平面AE上。故A正确,B、C、D错误。‎ ‎10. (2018·绵阳诊断)如图所示,轻杆长‎3L,在杆两端分别固定质量均为m的球A和B,光滑水平转轴穿过杆上距球A为L处的O点,外界给系统一定能量后,杆和球在竖直平面内转动,球B运动到最高点时,杆对球B恰好无作用力。忽略空气阻力。则球B在最高点时(  )‎ A.球B的速度为零 B.球A的速度大小为 C.水平转轴对杆的作用力为1.5mg D.水平转轴对杆的作用力为2.5mg 答案 C 解析 球B运动到最高点时,杆对球B恰好无作用力,即重力恰好提供向心力,有mg=m,解得vB=,故A错误;由于A、B两球的角速度相等,则球A的速度大小vA=,故B错误;B球在最高点时,对杆无弹力,此时A球受重力和拉力的合力提供向心力,有F-mg=m,解得:F=1.5mg,由牛顿第三定律知,C正确,D错误。‎ ‎11. (2018·沈阳模拟)用光滑圆管制成如图所示的轨道,竖直立于水平地面上,其中ABC为圆轨道的一部分,CD为倾斜直轨道,二者相切于C点,已知圆轨道的半径R=‎1 m,倾斜轨道CD与水平地面的夹角为θ=37°,现将一小球以一定的初速度从A点射入圆管,小球直径略小于圆管的直径,取重力加速度g=‎10 m/s2,sin37°=0.6,cos37°=0.8,求小球通过倾斜轨道CD的最长时间(结果保留一位有效数字)。‎ 答案 0.7 s 解析 小球通过倾斜轨道时间若最长,则小球到达圆轨道的最高点的速度为0,从最高点到C点:‎ 对小球由动能定理可得:mgh=mv 由几何关系得:h=R-Rcosθ 小球在CD段做匀加速直线运动,由位移公式得:‎ L=vCt+at2‎ CD的长度为:L= 对小球利用牛顿第二定律可得:mgsinθ=ma 代入数据联立解得:t≈0.7 s。‎ ‎12. (2018·开封模拟)如图所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN调节其与水平面所成的倾角。板上一根长为l=‎0.60 m的轻绳,它的一端系住一质量为m的小球P,另一端固定在板上的O点。当平板的倾角固定为α时,先将轻绳平行于水平轴MN拉直,然后给小球一沿着平板并与轻绳垂直的初速度v0=‎3.0 m/s。若小球能保持在板面内做圆周运动,倾角α的值应在什么范围内?(取重力加速度g=‎10 m/s2)‎ 答案 0°≤α≤30°‎ 解析 小球在倾斜平板上运动时受到绳子拉力、平板弹力、重力。在垂直平板方向上合力为0,重力在沿平板方向的分量为mgsinα 小球在最高点时,由绳子的拉力和重力沿平板方向的分力的合力提供向心力,有FT+mgsinα=m①‎ 研究小球从释放到最高点的过程,根据动能定理有 ‎-mglsinα=mv-mv②‎ 若恰好能通过最高点,则绳子拉力FT=0③‎ 联立①②③解得sinα=,解得α=30°‎ 故α的范围为0°≤α≤30°。‎

相关文档