- 373.50 KB
- 2021-05-22 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
1.如图所示,一个小球从地面竖直上抛。已知小球两次经过较低点A的时间间隔为TA,两次经过较高点B的时间间隔为TB,重力加速度为g,则A、B两点间的距离为( )
A. B.
C. D.
答案 D
解析 根据竖直上抛运动的对称性可知,A、B两点离最高点的高度分别为hA=g2=gT,hB=g2=gT,A、B两点间的距离Δh=hA-hB=,故D正确。
2.一条悬链长7.2 m,从悬挂点处断开,使其自由下落,不计空气阻力,则整条悬链通过悬挂点正下方20 m处的一点所需的时间是(g取10 m/s2)( )
A.0.3 s B.0.4 s C.0.7 s D.1.2 s
答案 B
3.(多选)从地面竖直上抛一物体A,同时在离地面某一高度处有一物体B自由下落,两物体在空中同时到达同一高度时速度大小均为v,则下列说法正确的是( )
A.A上抛的初速度与B落地时的速度大小相等,都是2v
B.两物体在空中运动的时间相等
C.A上升的最大高度与B开始下落时的高度相同
D.两物体在空中同时到达的同一高度处一定是B开始下落时高度的中点
答案 AC
4.伽利略在研究自由落体运动时,做了如下的实验:他让一个铜球从阻力很小(可忽略不计)的斜面上由静止开始滚下,并且做了上百次。假设某次实验伽利略是这样做的:在斜面上任取三个位置A、B、C,让小球分别由A、B、C滚下,如图所示。设A、B、C与斜面底端的距离分别为s1、s2、s3,小球由A、B、C运动到斜面底端的时间分别为t1、t2、t3,小球由A、B、C运动到斜面底端时的速度分别为v1、v2、v3,则下列关系式中正确并且是伽利略用来证明小球沿光滑斜面向下的运动是匀变速直线运动的是( )
A.== B.==
C.s1-s2=s2-s3 D.==
答案 D
解析 小球做初速度为零的匀加速直线运动,由匀加速直线运动规律知A、C错误;由s=at2和v=at知,a==,小球下滑的加速度相同,而B不是伽利略用来证明小球沿光滑斜面向下的运动是匀变速直线运动的关系式,故只有D正确。
5.在轻绳的两端各拴一个小球,一人用手拿着上端的小球站在3楼的阳台上,放手后让小球自由下落,两小球相继落地的时间差为T。如果站在4楼的阳台上,同样放手让小球自由下落,则两小球相继落地的时间差将( )
A.不变 B.增大 C.减小 D.无法判断
答案 C
6.关于自由落体运动(g=10 m/s2),下列说法中不正确的是( )
A.它是竖直向下,v0=0、a=g的匀加速直线运动
B.在开始连续的三个1 s内通过的位移之比是1∶3∶5
C.在开始连续的三个1 s末的速度大小之比是1∶2∶3
D.从开始运动到距下落点5 m、10 m、15 m所经历的时间之比为1∶2∶3
解析:选D 自由落体运动是竖直向下,v0=0、a=g的匀加速直线运动,A正确;根据匀变速直线运动规律,在开始连续的三个1 s内通过的位移之比是1∶3∶5,B正确;在开始连续的三个1 s末的速度大小之比是1∶2∶3,C正确;从开始运动到距下落点5 m、10 m、15 m所经历的时间之比为1∶∶,D错误。
7.钢球A自塔顶自由下落2 m时,钢球B自塔顶下方6 m处自由下落,两钢球同时到达地面,不计空气阻力,重力加速度为10 m/s2,则塔高为( )
A.24 m B.16 m
C.12 m D.8 m
解析:选D 设钢球A下落h1=2 m的时间为t1,塔高为h,钢球B的运动时间为t2,由h1=gt12,得t1= s,由h-6 m=gt22,又h=g(t1+t2)2,代入数据解得h=8 m,D正确。
8.伽利略在研究自由落体运动时,做了如下的实验:他让一个铜球从阻力很小(可忽略不计)的斜面上由静止开始滚下,并且做了上百次。假设某次实验伽利略是这样做的:在斜面上任取三个位置A、B、C,让小球分别由A、B、C滚下,如图所示。A、B、C与斜面底端的距离分别为s1、s2、s3,小球由A、B、C运动到斜面底端的时间分别为t1、t2、t3,小球由A、B、C运动到斜面底端时的速度分别为v1、v2、v3。则下列关系式中正确,并且是伽利略用来证明小球沿光滑斜面向下运动是匀变速直线运动的是( )
A.v1=v2=v3 B.==
C.s1-s2=s2-s3 D.==
9.蹦床运动要求运动员在一张绷紧的弹性网上蹦起、腾空并做空中运动。为了测量运动员跃起的高度,训练时可在弹性网上安装压力传感器,利用传感器记录弹性网所受的压力,并在计算机上作出压力—时间图像,假如作出的图像如图所示。设运动员在空中运动时可视为质点,则运动员跃起的最大高度是(g取10 m/s2)( )
A.1.8 m B.3.6 m
C.5.0 m D.7.2 m
解析:选C 由题图可知运动员每次在空中运动的时间t=2.0 s,故运动员跃起的最大高度Hm=g2=5.0 m,C正确。
10.某同学身高1.8 m,在运动会上他参加跳高比赛,起跳后身体横着越过1.8 m高度的横杆,据此可估算出他起跳时竖直向上的速度最接近(g取10 m/s2)( )
A.6 m/s B.5 m/s
C.4 m/s D.3 m/s
解析:选C 身高1.8 m的同学起跳后身体横着越过1.8 m 的横杆,其重心上升的高度大约为h=0.8 m,由v02=2gh得v0=4 m/s,选项C正确。
11.(多选)在某一高度以v0=20 m/s的初速度竖直上抛一个小球(不计空气阻力),当小球速度大小为10 m/s时,以下判断正确的是(g取10 m/s2)( )
A.小球在这段时间内的平均速度大小可能为15 m/s,方向向上
B.小球在这段时间内的平均速度大小可能为5 m/s,方向向下
C.小球在这段时间内的平均速度大小可能为5 m/s,方向向上
D.小球的位移大小一定是15 m
12.一个物体做末速度为零的匀减速直线运动,比较该物体在减速运动的倒数第3 m、倒数第2 m、最后1 m内的运动,下列说法中正确的是( )
A.经历的时间之比是1∶2∶3
B.平均速度之比是3∶2∶1
C.平均速度之比是1∶(-1)∶(-)
D.平均速度之比是(+)∶(+1)∶1
答案: D
13.一物块(可看做质点)以一定的初速度从一光滑斜面底端A点上滑,最高可滑至C点,已知AB是BC的3倍,如图所示,已知物块从A至B所需时间为t0。则它从B经C再回到B,需要的时间是( )
A.t0 B.
C.2t0 D.
解析: 将物块从A到C的匀减速直线运动,运用逆向思维可看做从C到A初速度为零的匀加速直线运动,根据初速度为零的匀加速直线运动规律,可知连续相邻相等的时间内位移之比为奇数比,而CB∶AB=1∶3,正好符合奇数比,故tAB=tBC=t0,且从B到C的时间等于从C到B的时间,故从B经C再回到B需要的时间是2t0。C对。
答案: C
14.
取一根长2 m左右的细线,5个铁垫圈和一个金属盘,在线端系上第一个垫圈,隔12 cm再系一个,以后垫圈之间的距离分别是36 cm、60 cm、84 cm,如图所示。站在椅子上,向上提起线的上端,让线自由垂下,且第一个垫圈紧靠放在地上的金属盘,松手后开始计时,若不计空气阻力,则第2、3、4、5个垫圈( )
A.落到盘上的声音时间间隔越来越大
B.落到盘上的声音时间间隔相等
C.依次落到盘上的速率关系为1∶∶∶2
D.依次落到盘上的时间关系为1∶(-1)∶(-)∶(2-)
解析: 各垫圈做自由落体运动,由于各垫圈之间的间距之比为1∶3∶5∶7,由初速度为零的匀变速直线运动的推论可以判断对应的时间间隔都相等,即落在盘上的声音时间间隔也必定相等,选项A、D错误,B正确。它们依次落在盘上的速度之比为1∶2∶3∶4,选项C错误。
答案: B
15.物体从离地面45 m高处做自由落体运动(g取10 m/s2),则下列选项中正确的是( )
A.物体运动3 s后落地
B.物体落地时的速度大小为30 m/s
C.物体在落地前最后1 s内的位移为25 m
D.物体在整个下落过程中的平均速度为20 m/s
16.如图2所示,小球从竖直砖墙某位置静止释放,用频闪照相机在同一底片上多次曝光,得到了图2中1、2、3、4、5…所示小球运动过程中每次曝光的位置.连续两次曝光的时间间隔均为T,每块砖的厚度为d.根据图中的信息,下列判断错误的是 ( ).
图2
A.位置“1”是小球的初始位置
B.小球做匀加速直线运动
C.小球下落的加速度为
D.小球在位置“3”的速度为
答案 A
17.小球从空中某处由静止开始自由下落,与水平地面碰撞后上升到空中某一高度,此过程中小球速度随时间变化的关系如图3所示,则 ( ).
图3
A.在下落和上升两个过程中,小球的加速度不同
B.小球开始下落处离地面的高度为0.8 m
C.整个过程中小球的位移为1.0 m
D.整个过程中小球的平均速度大小为2 m/s
解析 v t图象斜率相同,即加速度相同,A选项不正确;0~0.4 s内小球做自由落体过程,通过的位移即为高度0.8 m,B选项正确;前0.4 s小球自由下落0.8 m,后0.2 s反弹向上运动0.2 m,所以整个过程中小球的位移为0.6 m,C选项不正确;整个过程中小球的平均速度大小为1m/s,D选项不正确.
答案 B
18.一个从地面竖直上抛的物体,它两次经过一个较低的点a的时间间隔是Ta,两次经过一个较高点b的时间间隔是Tb,则a、b之间的距离为( )
A.g(T-T) B.g(T-T)C.g(T-T) D.g(Ta-Tb)
答案 A
解析 根据时间的对称性,物体从a点到最高点的时间为,从b点到最高点的时间为,所以a点到最高点的距离ha=g()2=,b点到最高点的距离hb=g()2=,故a、b之间的距离为ha-hb=g(T-T),故选A.
19.如图2所示,在一个桌面上方有三个金属小球a、b、c,离桌面高度分别h1∶h2∶h3=3∶2∶1.若先后顺次静止释放a、b、c,三球刚好同时落到桌面上,不计空气阻力,则下列说法不正确的是( )
图2
A.三者到达桌面时的速度之比是∶∶1
B.三者运动的平均速度之比是∶∶1
C.b与a开始下落的时间差小于c与b开始下落的时间差
D.b与a开始下落的时间差大于c与b开始下落的时间差
答案 D
20.距地面高5m的水平直轨道上A、B两点相距2m,在B点用细线悬挂一小球,离地高度为h,如图4所示.小车始终以4m/s的速度沿轨道匀速运动,经过A点时将随车携带的小球由轨道高度自由卸下,小车运动至B点时细线被轧断,最后两球同时落地.不计空气阻力,取重力加速度的大小g=10 m/s2.可求得h等于( )
图4
A.1.25m B.2.25m C.3.75m D.4.75m
答案 A
21.(多选)从水平地面竖直向上抛出一物体,物体在空中运动,到最后又落回地面.在不计空气阻力的条件下,以下判断正确的是 ( ).
A.物体上升阶段的加速度与物体下落阶段的加速度相同
B.物体上升阶段的加速度与物体下落阶段的加速度方向相反
C.物体上升过程经历的时间等于物体下落过程经历的时间
D.物体上升过程经历的时间小于物体下落过程经历的时间
解析 物体竖直上抛,不计空气阻力,只受重力,则物体上升和下降阶段加速度相同,大小为g,方向向下,A正确,B错误;上升和下落阶段位移大小相等,加速度大小相等,所以上升和下落过程所经历的时间相等,C正确,D错误.
答案 AC
22.取一根长2 m左右的细线,5个铁垫圈和一个金属盘.在线的一端系上第一个垫圈,隔12 cm再系一个,以后垫圈之间的距离分别为36 cm、60 cm、84 cm,如图1所示.站在椅子上,向上提起线的另一端,让线自由垂下,且第一个垫圈紧靠放在地面上的金属盘内.松手后开始计时,若不计空气阻力,则第2、3、4、5各垫圈 ( ).
图1
A.落到盘上的声音时间间隔越来越大
B.落到盘上的声音时间间隔相等
C.依次落到盘上的速率关系为1∶∶∶2
D.依次落到盘上的时间关系为1∶(-1)∶(-)∶(2-)
解析 垫圈之间的距离分别为12 cm、36 cm、60 cm、84 cm,满足1∶3∶5∶7的关系,因此时间间隔相等,A项错误,B项正确.垫圈依次落到盘上的速率关系为1∶2∶3∶4∶…,垫圈依次落到盘上的时间关系为1∶2∶3∶4∶…,C、D项错误.
答案 B
23.一物体自空中的A点以一定的初速度竖直向上抛出,1 s后物体的速率变为10 m/s,则此时物体的位置和速度方向可能是(不计空气阻力,g=10 m/s2) ( ).
A.在A点上方,速度方向向下
B.在A点上方,速度方向向上
C.正在A点,速度方向向下
D.在A点下方,速度方向向下
答案 B
24.一个从地面竖直上抛的物体,它两次经过一个较低的点a的时间间隔是Ta,两次经过一个较高点b的时间间隔是Tb,则a、b之间的距离为( ).
A.g(T-T) B.g(T-T)
C.g(T-T) D.g(Ta-Tb)
解析 根据时间的对称性,物体从a点到最高点的时间为,从b点到最高点的时间为,所以a点到最高点的距离ha=g2=,b点到最高点的距离hb=g2=,故a、b之间的距离为ha-hb=g(T-T),故选A.
答案 A
25.如图3所示,运动员从离水面10m高的平台上向上跃起,举起双臂直体离开台面,此时其重心位于从手到脚全长的中点,跃起后重心升高0.45m达到最高点,落水时身体竖直,手先入水(在此过程中运动员水平方向的运动忽略不计,计算时可以把运动员看成全部质量集中在重心的一个质点,g取10m/s2),求:
图3
(1)运动员起跳时的速度v0.
(2)从离开跳台到手接触水面的过程中所经历的时间t(结果保留3位有效数字).
答案 (1)3m/s (2)1.75s
26.在一次低空跳伞训练中,当直升机悬停在离地面224m高处时,伞兵离开飞机做自由落体运动.运动一段时间后,打开降落伞,展伞后伞兵以12.5m/s2的加速度匀减速下降.为了伞兵的安全,要求伞兵落地速度最大不得超过5 m/s,求:(取g=10m/s2)
(1)伞兵展伞时,离地面的高度至少为多少?
(2)伞兵在空中的最短时间为多少?
答案 (1)99m (2)8.6s
解析 (1)设伞兵展伞时,离地面的高度至少为h,此时速度为v0
则有:v2-v=-2ah,
又v=2g(224m-h)
联立并代入数据解得:v0=50m/s,h=99m
(2)设伞兵在空中的最短时间为t,
则有:v0=gt1,
t1=5s
t2==3.6s,
故所求时间为:t=t1+t2=(5+3.6) s=8.6s.
27.李煜课外活动小组自制一枚火箭,火箭从地面发射后,始终在垂直于地面的方向上运动,火箭点火后可认为做匀加速直线运动,经过4 s到达离地面40 m高处时燃料恰好用完,若不计空气阻力,取g=10 m/s2,求:
(1)燃料恰好用完时火箭的速度;
(2)火箭离地面的最大高度;
(3)火箭从发射到残骸落回地面过程的总时间.
28.在一次低空跳伞训练中,当直升机悬停在离地面H=224 m高处时,伞兵离开飞机做自由落体运动。运动一段时间后,打开降落伞,展伞后伞兵以a=12.5 m/s2的加速度匀减速下降。为了伞兵的安全,要求伞兵落地速度最大不得超过v=5 m/s,取g=10 m/s2,求:
(1)伞兵展伞时,离地面的高度至少为多少?
(2)伞兵在空中的最短时间为多少?
解析:(1)设伞兵展伞时,离地面的高度至少为h,此时速度为v0
则有:v2-v02=-2ah,
又v02=2g(H-h)
联立并代入数据解得:v0=50 m/s
h=99 m。