• 56.00 KB
  • 2021-05-24 发布

简谐运动·典型例题精析

  • 10页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
简谐运动·典型例题精析 ‎[例题1]  一弹簧振子在一条直线上做简谐运动,第一次先后经过M、N两点时速度v(v≠0)相同,那么,下列说法正确的是 ‎[    ]‎ A.振子在M、N两点受回复力相同 B.振子在M、N两点对平衡位置的位移相同 C.振子在M、N两点加速度大小相等 D.从M点到N点,振子先做匀加速运动,后做匀减速运动 ‎[思路点拨]  建立弹簧振子模型如图9-1所示.由题意知,振子第一次先后经过M、N两点时速度v相同,那么,可以在振子运动路径上确定M、N两点,M、N两点应关于平衡位置O对称,且由M运动到N,振子是从左侧释放开始运动的(若M点定在O点右侧,则振子是从右侧释放的).建立起这样的物理模型,这时问题就明朗化了.‎ ‎[解题过程]  因位移、速度、加速度和回复力都是矢量,它们要相同必须大小相等、方向相同.M、N两点关于O点对称,振子回复力应大小相等、方向相反,振子位移也是大小相等,方向相反.由此可知,A、B选项错误.振子在M、N两点的加速度虽然方向相反,但大小相等,故C选项正确.振子由M→O速度越来越大,但加速度越来越小,振子做加速运动,但不是匀加速运动.振子由O→N速度越来越小,但加速度越来越大,振子做减速运动,但不是匀减速运动,故D选项错误.由以上分析可知,该题的正确答案为C.‎ ‎[小结]  (1)认真审题,抓住关键词语.本题的关键是抓住“第一次先后经过M、N两点时速度v相同”.‎ ‎(2)要注意简谐运动的周期性和对称性,由此判定振子可能的路径,从而确定各物理量及其变化情况.‎ ‎(3)要重视将物理问题模型化,画出物理过程的草图,这有利于问题的解决.‎ ‎[例题2]  一质点在平衡位置O附近做简谐运动,从它经过平衡位置起开始计时,经0.13 s质点第一次通过M点,再经0.1s第二次通过M点,则质点振动周期的可能值为多大?‎ ‎[思路点拨]  将物理过程模型化,画出具体的图景如图9-2所示.设质点从平衡位置O向右运动到M点,那么质点从O到M运动时间为0.13 s,再由M经最右端A返回M经历时间为0.1 s;如图9-3所示.‎ 另有一种可能就是M点在O点左方,如图9-4所示,质点由O点经最右方A点后向左经过O点到达M点历时0.13 s,再由M向左经最左端A′点返回M历时0.1 s.‎ 根据以上分析,质点振动周期共存在两种可能性.‎ ‎[解题过程]  如图9-3所示,可以看出O→M→A历时0.18 s,根据简谐运动的对称性,可得到T1=4×0.18=0.72 s.‎ 另一种可能如图9-4所示,由O→A→M历时t1=0.13 s,由M→A′历时t2=0.05 s.设M→O历时t,则4(t+t2)=t1+2t2+t.解得t=0.01 s,则T2=4(t+t2)=0.24 s.‎ 所以周期的可能值为0.72 s和0.24 s.‎ ‎[小结]  (1)本题涉及知识有:简谐运动周期、简谐运动的对称性知识.‎ ‎(2)本题的关键是:分析周期的可能性,弄清物理图景.‎ ‎(3)解题方法:将物理过程模型化、分段分析、讨论.‎ ‎[例题3]  甲、乙两弹簧振子,振动图象如图9-5所示,则可知 ‎[    ]‎ A.两弹簧振子完全相同 B.两弹簧振子所受回复力最大值之比F甲∶F乙=2∶1‎ C.振子甲速度为零时,振子乙速度最大 D.振子的振动频率之比f甲∶f乙=1∶2‎ ‎[思路点拨]  观看图象,从图象上尽可能多地获取信息,从图象中能看出甲、乙弹簧振子的振幅、周期,并与物理模型相联系,通过对模型的分析并结合图象,选出正确选项.‎ ‎[解题过程]  从图象中可以看出,两弹簧振子周期之比T甲∶T乙=2∶1,得频率之比f甲∶f乙 ‎=1∶2,D正确.弹簧振子周期与振子质量、弹簧劲度系数k有关,周期不同,说明两弹簧振子不同,A错误.由于弹簧的劲度系数k不一定相同,所以两振子受回复力(F=kx)的最大值之比F甲∶F乙不一定为2∶1,所以B错误,对简谐运动进行分析可知,在振子到达平衡位置时位移为零,速度最大;在振子到达最大位移处时,速度为零,从图象中可以看出,在振子甲到达最大位移处时,振子乙恰到达平衡位置,所以C正确.答案为C.D.‎ ‎[小结]  (1)图象法是物理问题中常见的解题方法之一,是用数学手段解决物理问题能力的重要体现.应用图象法解物理问题要明确图象的数学意义,再结合物理模型弄清图象描述的物理意义,两者结合,才能全面地分析问题.‎ ‎(2)本题中涉及知识点有:振幅、周期、频率、影响周期的因素、简谐运动在特殊点的速度、回复力、简谐运动的对称性等.‎ ‎(3)分析本题的主要方法是数与形的结合(即图象与模型相结合)分析方法.‎ ‎[例题4]  在下列情况下,能使单摆周期变小的是 ‎[    ]‎ A.将摆球质量减半,而摆长不变 B.将单摆由地面移到高山 C.将单摆从赤道移到两极 D.将摆线长度不变,换一较大半径的摆球 单摆的振动周期,只与摆长、当地的重力加速度有关,而与其他因素无关.当单摆的某些物理量发生变化时,只要摆长、重力加速度不变,单摆振动周期则不变.‎ 为摆长l和重力加速度g.当摆球质量减半时摆长未变,周期不变;当将单摆由地面移到高山时,g值变小,T变大;当单摆从赤道移到两极时g变大,T变小;当摆线长度不变,摆球半径增大时,摆长l增大,T变大.所以选C.本题答案为C.‎ ‎[小结]  (1)本题涉及单摆周期公式、影响单摆周期的因素、影响重力加速度的因素等知识.‎ ‎(2)抓住各知识点间的联系,进行推理分析是顺利解决本题的关键.‎ ‎[例题5]  高楼顶上吊下一根长绳,给你一块秒表,一把只有几米长的米尺,一个带钩的重球,你能否量出楼高?‎ ‎[思路点拨]  本题中虽给出米尺,但却不便测绳的(楼高)长度,而用秒表、重球来测楼高,与我们所学知识相联系,可想到利用单摆周期公式测摆长的方法,在重力加速度未知时,可采用变换摆长测两个周期值的方法,在计算中消去g,即可得到摆长,进而知道楼高.‎ ‎[解题过程]  (1)设绳长l1,将重球挂在绳的端点,让其摆动,测得周期T1(实际上需测得摆动N次全振动所需时间t,T1=t/N).‎ ‎(2)将重球挂在绳的另一位置,这时摆长为l2,用米尺量出摆长变化Δl,则Δl=l1-l2,让摆球摆动,测得此时周期为T2.‎ 所以 得 由此测得绳长,也就测得楼高.‎ ‎[小结]  从秒表、重球进而联系到长度,这是一个逆向思维过程,这需要有较扎实的基础知识和较灵活的思维能力才可,在平时训练中,我们应加强知识在实际中的灵活运用.提高我们分析问题和解决问题的能力.‎ ‎[例题6]  在海平面校准的摆钟,拿到某高山山顶,经过t时间,发现表的示数为t′,若地球半径为R,求山的高度h(不考虑温度对摆长的影响).‎ ‎[思路点拨]  由钟表显示时间的快慢程度可以推知表摆振动周期的变化,而这种变化是由于重力加速度的变化引起的,所以,可以得知由于高度的变化引起的重力加速度的变化,再根据万有引力公式计算出高度的变化,从而得出山的高度.‎ 一般山的高度都不是很高(与地球半径相比较),所以,由于地球自转引起的向心力的变化可以不考虑,而认为物体所受向心力不变且都很小,物体所受万有引力近似等于物体的重力.‎ ‎[解题过程]  (1)设在地面上钟摆摆长l,周期为T0,地面附近重力加速度g,拿到高山上,摆振动周期为T′,重力加速度为g′,应有 ‎(2)在地面上的物体应有 在高山上的物体应有 得 ‎[小结]  (1)本题涉及知识点:单摆的周期及公式,影响单摆周期的因素,万有引力及公式,地面附近重力与万有引力关系等.‎ ‎(2)解题关键:抓住影响单摆周期的因素g,找出g的变化与t变化的关系,再根据万有引力知识,推出g变化与高度变化关系,从而顺利求解.‎

相关文档