- 680.54 KB
- 2021-05-25 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
微型专题2 两类竖直面内的圆周运动
知识目标
核心素养
1.掌握轻绳或轻杆约束下圆周运动的两个特殊点的相关分析.
2.学会分析圆周运动问题的一般方法.
1.掌握竖直面内圆周运动的两种基本模型.
2.掌握竖直面内圆周运动到达最高点的临界条件.
一、竖直面内圆周运动的轻绳(过山车)模型
如图1所示,甲图中小球受绳拉力和重力作用,乙图中小球受轨道的弹力和重力作用,二者运动规律相同,现以甲图为例.
图1
(1)最低点运动学方程:FT1-mg=m
所以FT1=mg+m
(2)最高点运动学方程:FT2+mg=m
所以FT2=m-mg
(3)最高点的最小速度:由于绳不可能对球有向上的支持力,只能产生向下的拉力,由FT2+mg=可知,当FT2=0时,v2最小,最小速度为v2=.
讨论:当v2=时,拉力或压力为零.
当v2>时,小球受向下的拉力或压力.
当v2<时,小球不能到达最高点.
例1 一细绳与水桶相连,水桶中装有水,水桶与细绳一起在竖直平面内做圆周运动,如图2所示,水的质量m=0.5 kg,水的重心到转轴的距离l=50 cm.(g取10 m/s2)
图2
(1)若在最高点水不流出来,求桶的最小速率;(结果保留三位有效数字)
(2)若在最高点水桶的速率v=3 m/s,求水对桶底的压力大小.
答案 (1)2.24 m/s (2)4 N
解析 (1)以水桶中的水为研究对象,在最高点恰好不流出来,说明水的重力恰好提供其做圆周运动所需的向心力,此时桶的速率最小.
此时有:mg=m,
则所求的最小速率为:v0=≈2.24 m/s.
(2)此时桶底对水有一向下的压力,设为FN,则由牛顿第二定律有:FN+mg=m,
代入数据可得:FN=4 N.
由牛顿第三定律,水对桶底的压力大小:FN′=FN=4 N.
【考点】竖直面内的圆周运动分析
【题点】竖直面内的“绳”模型
针对训练 (多选)如图3所示,用长为l的细绳拴着质量为m的小球在竖直平面内做圆周运动,则下列说法中正确的是( )
图3
A.小球在圆周最高点时所受的向心力一定为重力
B.小球在最高点时绳子的拉力不可能为零
C.若小球刚好能在竖直平面内做圆周运动,则其在最高点的速率为
D.小球过最低点时绳子的拉力一定大于小球重力
答案 CD
解析 小球在圆周最高点时,向心力可能等于重力也可能等于重力与绳子的拉力之和,取决于小球的瞬时速度的大小,A错误;小球在圆周最高点时,如果向心力完全由重力充当,则可以使绳子的拉力为零,B
错误;小球刚好能在竖直面内做圆周运动,则在最高点,重力提供向心力,mg=,v=,C正确;小球在圆周最低点时,具有竖直向上的向心加速度,处于超重状态,绳子的拉力一定大于小球的重力,故D正确.
【考点】竖直面内的圆周运动分析
【题点】竖直面内的“绳”模型
二、竖直面内圆周运动的轻杆(管)模型
如图4所示,细杆上固定的小球和管形轨道内运动的小球在重力和杆(管)的弹力作用下做圆周运动.
图4
(1)最高点的最小速度
由于杆和管在最高处能对小球产生向上的支持力,故小球恰能到达最高点的最小速度v=0,此时小球受到的支持力FN=mg.
(2)小球通过最高点时,轨道对小球的弹力情况
①v>,杆或管的外侧对球产生向下的拉力或压力,mg+F=m,所以F=m-mg,F随v 增大而增大.
②v=,球在最高点只受重力,不受杆或管的作用力,F=0,mg=m.
③0mg,根据牛顿第三定律得D正确.
【考点】竖直面内的圆周运动分析
【题点】竖直面内的“绳”模型
考点二 杆(管)模型
5.长度为1 m的轻杆OA的A端有一质量为2 kg的小球,以O点为圆心,在竖直平面内做圆周运动,如图3所示,小球通过最高点时的速度为3 m/s,g取10 m/s2,则此时小球将( )
图3
A.受到18 N的拉力
B.受到38 N的支持力
C.受到2 N的拉力
D.受到2 N的支持力
答案 D
解析 设此时轻杆拉力大小为F,根据向心力公式有F+mg=m,代入数值可得F=-2 N,表示小球受到2 N的支持力,选项D正确.
【考点】竖直面内的圆周运动分析
【题点】竖直面内的“杆”模型
6.(多选)如图4所示,一个内壁光滑的弯管处于竖直平面内,其中管道半径为R.现有一个半径略小于弯管横截面半径的光滑小球在弯管里运动,当小球通过最高点时速率为v0,则下列说法中正确的是( )
图4
A.若v0=,则小球对管内壁无压力
B.若v0>,则小球对管内上壁有压力
C.若0