• 734.50 KB
  • 2021-05-26 发布

高中物理分章知识点:微观量的计算

  • 7页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎ ‎ 微观量的计算 知识要点:‎ ‎ 宏观量,如物体的质量、体积、密度等是可以测量的。微观量,如分子质量;分子直径;分子体积;分子间的距离;分了个数等不能直接测量的。我们可以通过能直接的宏观量,来估算微观量。‎ ‎ 阿伏加德罗常数是把宏观量与微观量联系起来的桥梁。‎ 一、估算分子数:‎ ‎ 设分子个数N,摩尔数n,阿伏加德罗数NA.‎ ‎ ‎ ‎ 摩尔n的计算有两种方法:‎ ‎ 1、已知物质的质量为M,摩尔质量Mm ‎ 则摩尔数 ‎ 2、已知物质的体积为V,摩尔体积Vm ‎ 则摩尔数 ‎ 例1:估算10g水中,含有的水分子数。(保留两位有效数字)‎ ‎ 解:‎ ‎ ‎ ‎ 例2:估算压强为0.5atm,体积为10 l温度27℃,空气中的分子数。(保留两位有效数字)‎ ‎ 解题思路:‎ ‎ 1、将所给气体状态转化为标准状态下,求出气体体积V′‎ ‎ 2、用标况下气体的摩尔体积求出摩尔数n ‎ 3、分子个数 ‎ 解:‎ 7‎ ‎ ‎ ‎ ‎ 二、估算分了的质量和,固体或液体的分子直径 ‎ 1、估算分子质量:‎ ‎ 分子质量m,摩尔质量M摩。阿伏加德罗常数NA。‎ ‎ ‎ ‎ 2、估算液体或固体分子的直径:‎ ‎ 估算液体或固体的分子直径时,可忽略分子之间的空隙,分子一个挨一个排列,则分子体积V分 ‎ ‎ ‎ 再将分子视为直径为d的小球 ‎ ‎ ‎ 例1:已知铜的摩尔质量是64g / mol,铜的密度是8.9×103kg / m3试估算铜原子的质量和半径。‎ ‎ 解:铜原子的质量 ‎ ‎ ‎ 铜的摩尔体积:‎ ‎ 铜的原子体积:‎ ‎ 每个铜分子的直径:d ‎ ‎ ‎ 代入数据 7‎ ‎ ‎ ‎ ‎ 三、估算气体分子间的平均距离 ‎ 气体分子模型:‎ ‎ 气体分子间距离比分子的线度大的多,在进行估算时,可以认为气体分子均匀分布在空间。每个分子占有一个小立方体的空间,分子位于重点方体中心,如图所示。‎ ‎ 每个分子平均占空体积 ‎ ‎ 分子间距离 ‎ 例:某容器中气体压强为0.2atm,温度为27°,求容器中空气分子间的平均距离。‎ ‎ 解:1 mol 标况下的气体,在题目所给状态下,求占有的体积V,‎ ‎ ‎ ‎ ‎ ‎ 每个分子平均占空体积 ‎ ‎ ‎ ‎ 分子间的平均距离 ‎ ‎ 气体的性质 知识要点:‎ ‎(一)气体的状态参量——体积、温度和压强 ‎ 1、气体的体积:‎ ‎ 国际单位制中,体积单位:m3‎ ‎ 常用单位及换算关系:‎ 7‎ ‎ ‎ ‎ ‎ ‎ 2、气体的温度:‎ ‎ (1)温度:表示物体的冷热程度,是七个基本物理量之一。‎ ‎ (2)国际单位制中,用热力学温度标表示的温度,叫热力学温度。单位:开尔文。(符号):K ‎ 热力学温度摄氏温标换算关系:‎ ‎ ‎ ‎ 3、气体的压强:‎ ‎ (1)气体压强:气体对容器壁单位面积上的压力。‎ ‎ (2)气体压强可以用压强计测量。‎ ‎ (3)压强的单位:‎ ‎ 国际单位制中用:帕斯卡、符号:Pa 1 Pa = 1N / m2‎ ‎ 常用单位:标准大气压 (atm)毫米汞柱(mmHg)‎ ‎ 换算关系:1 atm = 760mmHg = 1.013×105 Pa ‎ 1mmHg = atm = 133.3 Pa ‎(2)气体的实验定律:‎ ‎ 1、破意定律:‎ ‎ (1)定律:一定质量的气体在温度不变的条件下,它的压强跟体积成反比。‎ ‎ 即:‎ ‎ 或:‎ ‎ (2)适用条件:‎ ‎ ①气体压强不太大(与大气压相比)‎ ‎ ②温度不太低(与室温相比)‎ ‎ ③质量不变,温度不变 ‎ (3)等温线:‎ ‎ ①在P—V;P—T;V—T坐标中的等温线:‎ ‎ ②图象:‎ 7‎ ‎ ‎ ‎ 为一条过原点的直线: ‎ ‎ ③对一定质量的气体,温度越高,PV越大(∵ PV=nRT)。下图为一定质量气体在不同温度下的等温线,其中 ‎ 2、查理定律 ‎ (1)表述一:一定质量的气体,在体积不变的条件下,温度每升高(或降低)1℃,它们的压强增加(或减少)量等于在0℃时压强的 ‎ 即:‎ ‎ 或 ‎ ‎ P—t图中的等容线:过-273℃‎ ‎ (2)表述二:一定质量的气体,在体积不变的条件下,它的压强和热力学温度成正比。‎ ‎ 即:‎ ‎ 在P—V坐标中 ‎ ‎ (3)等容线 ‎ ①‎ 7‎ ‎ ‎ ‎ ‎ ‎ ②一定质量在不同体积下的P—T图线() ‎ ‎ V越大,斜率()越小。图中 ‎ 3、盖吕萨克定律:‎ ‎ (1)表述一:一定质量的气体,在压强不变的条件下,温度每升高(或降低)1℃,它的体积的增加(或减少)量等于0℃时体积的。‎ ‎ 即:‎ ‎ V—t坐标中等压线:‎ ‎ ‎ ‎ (2)表述二:一定质量的气体,在压强不变的条件下,它的体积跟热力学温度成正比。‎ ‎ 即:‎ ‎ (3)等压线:‎ ‎ ①‎ 7‎ ‎ ‎ ‎ ②一定量气体在不同压强下的V—T图象。()‎ ‎ P越大,斜率()越小。下图中 ‎ ‎ ‎ 4、理想气体状态方程:‎ ‎ 利用玻意耳定律和查理定律证明一定质量不理想气体满足 7‎

相关文档