• 100.50 KB
  • 2021-05-26 发布

【物理】2018届二轮复习平抛运动中的临界问题学案(全国通用)

  • 5页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎ 平抛运动中的临界问题 平抛运动中的临界问题:‎ ‎(1)在体育运动中,像乒乓球、排球、网球等都有中间网及边界问题,要求球既能过网,又不出边界,某物理量(尤其是球速)往往要有一定的范围限制,在这类问题中,确定临界状态,画好临界轨迹,是解决问题的关键点.‎ ‎(2)分析平抛运动中的临界问题时一般运用极限分析的方法,即把要求的物理量设定为极大或极小,让临界问题突现出来,找到产生临界的条件.‎ 例题 1.(多选)如图所示,一高度为h的光滑水平面与一倾角为θ的斜面连接,一小球以速度v从平面的右端P点向右水平抛出,则小球在空中运动的时间t(  )‎ A.一定与v的大小有关 B.一定与v的大小无关 C.当v大于 cot θ时,t与v无关 D.当v小于 cot θ时,t与v有关 解析:选CD.球有可能落在斜面上,也有可能落在水平面上,可用临界法求解,如果小球恰好落在斜面与水平面的交点处,则满足hcot θ=vt,h=gt2,联立可得v= cot θ.故当v大于 cot θ时,小球落在水平面上,t=,与v无关;当v小于 cot θ时,小球落在斜面上,x=vt,y=gt2,=tan θ,联立可得t=,即与v有关,故选项C、D正确.‎ ‎ 例题2.一带有乒乓球发射机的乒乓球台如图所示.水平台面的长和宽分别为L1和L2,中间球网高度为h.发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h.不计空气的作用,重力加速度大小为g.若乒乓球的发射速率v 在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v的最大取值范围是(  )‎ A.<v<L1 B.<v< C.<v< D.<v< 解析:选D.设以速率v1发射乒乓球,经过时间t1刚好落到球网正中间.‎ 则竖直方向上有3h-h=gt,①‎ 水平方向上有=v1t1.②‎ 由①②两式可得v1=.‎ 设以速率v2发射乒乓球,经过时间t2刚好落到球网右侧台面的两角处,‎ 在竖直方向有3h=gt,③‎ 在水平方向有 =v2t2.④‎ 由③④两式可得v2= .‎ 则v的最大取值范围为v1<v<v2,故选项D正确.‎ 例题3.(多选)如图所示,相同的乒乓球1、2恰好在等高处水平越过球网,不计乒乓球的旋转和空气阻力,乒乓球自最高点到落台的过程中,下列说法正确的是(  )‎ A.过网时球1的速度小于球2的速度 B.球1的飞行时间大于球2的飞行时间 C.球1的速度变化率等于球2的速度变化率 D.落台时,球1的重力功率等于球2的重力功率 解析:选CD.由h=gt2知两球运动时间相等,B错误;由于球1水平位移大,故水平速度大,A错误;两球都做平抛运动,故加速度等大,即速度变化率相等,C正确;由v=2gh可知落台时两球竖直速度等大,又因为重力等大,故落台瞬时功率等大,D正确.‎ 例题4. 如图所示,水平屋顶高H=‎5 m,墙高h=‎3.2 m,墙到房子的距离L=‎3 m,墙外马路宽x=‎10 m,小球从房顶水平飞出,落在墙外的马路上,g=‎10 m/s2.求:‎ ‎(1)小球离开屋顶时的速度v0的大小范围;‎ ‎(2)小球落在马路上的最小速度.‎ 解析 (1)设小球恰好落到马路的右侧边缘时,水平初速度为v01,则 L+x=v01t1‎ 竖直位移H=gt 联立解得v01=(L+x) =13 m/s 设小球恰好越过围墙的边缘时,水平初速度为v02,则 水平位移L=v02t2‎ 竖直位移H-h=gt 联立解得v02=5 m/s 所以小球抛出时的速度大小范围为5 m/s≤v0≤13 m/s.‎ ‎(2)小球落在马路上,下落高度一定,落地时的竖直分速度一定,当小球恰好越过围墙的边缘落在马路上时,落地速度最小.‎ 竖直方向v=2gH 又有vmin= ‎ 解得vmin=5 m/s 例题5. 如图所示,一名跳台滑雪运动员经过一段时间的加速滑行后从O点水平飞出,经过3 s落到斜坡上的A点.已知O点是斜坡的起点,斜坡与水平面的夹角θ=37°,运动员的质量m=‎50 kg.不计空气阻力(sin 37°=0.6,cos 37°=0.8;g取‎10 m/s2).求:‎ ‎(1)A点与O点的距离L;‎ ‎(2)运动员离开O点时的速度大小;‎ ‎(3)运动员从O点飞出开始到离斜坡距离最远所用的时间.‎ 解析:(1)运动员在竖直方向做自由落体运动,‎ 有Lsin 37°=gt2,‎ L==‎75 m.‎ ‎(2)设运动员离开O点时的速度为v0,运动员在水平方向的分运动为匀速直线运动,有Lcos 37°=v0t,‎ 即v0==20 m/s.‎ ‎(3)运动员的平抛运动可分解为沿斜面方向的匀加速运动(初速度为 v0cos 37°、加速度为gsin 37°)和垂直斜面方向的类竖直上抛运动(初速度为v0sin 37°、加速度为gcos 37°).‎ 当垂直斜面方向的速度减为零时,运动员离斜坡最远,‎ 有v0sin 37°=gcos 37°·t,解得t=1.5 s 例题6.(多选)‎ ‎ 如图所示,在网球的网前截击练习中,若练习者在球网正上方距地面H处,将球以速度v沿垂直球网的方向击出,球刚好落在底线上,已知底线到网的距离为L,重力加速度取g,将球的运动视作平抛运动,下列表述正确的是(  )‎ A.球的速度v等于L B.球从击出至落地所用时间为 C.球从击球点至落地点的位移等于L D.球从击球点至落地点的位移与球的质量有关 解析:选AB.由平抛运动规律知,在水平方向上有L=vt,在竖直方向上有H=gt2,联立解得t= ,v==L ,A、B正确;球从击球点至落地点的位移为x=,与球的质量无关,C、D错误.‎

相关文档