- 1.39 MB
- 2021-05-28 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第二
部分
微
专题拓展提升
微专题一 平抛运动二级
结论
的
一个妙用
-
3
-
一、结论推导
平抛物体经过时间
t
到达
P
点
,
则有
水平方向
:
v
x
=v
0
,
x=v
0
t
过
P
点做末速度的反向延长线
,
交初速度所在直线于
C
点
,
由上式可知
,
CD= x
,
即
C
点是水平位移
OD
的中点。
二、结论妙用
在平抛物体与斜面、圆弧面等已知形状的障碍物组合的问题中
,
若按上述方式过落点作末速度反向延长线
,
利用上述结论即可迅速求出相应的水平位移
x
和竖直位移
y
,
从而迅速解决平抛运动问题。
-
4
-
【例
1
】
如图所示为四分之一圆柱体
OAB
的竖直截面
,
半径为
R
,
在
B
点上方的
C
点水平抛出一个小球
,
小球轨迹恰好在
D
点与圆柱体相切
,
OD
与
OB
的夹角为
60
°
,
则
C
点到
B
点的距离为
(
)
-
5
-
答案
:
D
解析
:
过
D
点作末速度反向延长线
,
交水平位移
CF
于
E
点
,
过
D
点作
OB
的垂线
DG
,
交
OB
于
G
点。则由几何关系易知
-
6
-
【例
2
】
如图所示
,
小球由倾角为
45
°
的斜坡底端
P
点正上方某一位置
Q
处自由下落
,
下落至
P
点的时间为
t
1
,
若小球从同一点
Q
处以速度
v
0
水平向左抛出
,
恰好垂直撞在斜坡上
,
运动时间为
t
2
,
不计空气阻力
,
则
t
1
∶
t
2
等于
(
)
-
7
-
答案
:
B
解析
:
设小球在斜坡上的落点为
A
,
过
A
点作末速度反向延长线
,
交水平位移于
C
点
,
过
A
、
C
作两条竖直辅助线
AD
、
CG
,
过
A
作一条水平辅助线
AF
,
交
CG
于
E
点
,
交
QP
于
F
点
,
如图所示。
则由几何关系
,
有
CD= x=AE=CE=EB
,
CE=y
B
点为
AP
中点
,
故有
BG=EB=CE
,
故
有
PQ=CG=
3
y
-
8
-
练
1
如图蜘蛛在地面与竖直墙壁间结网
,
蛛丝
AB
与水平地面之间的夹角为
45
°
,
A
点到地面的距离为
1 m,
已知重力加速度
g
取
10 m/s
2
,
空气阻力不计
,
若蜘蛛从竖直墙上距地面
0.8 m
的
C
点以水平速度
v
0
跳出
,
要到达蛛丝
,
水平速度
v
0
可以为
(
)
A.1 m/s B.2 m/s
C.3.5 m/s D.1.5 m/s
BC
-
9
-
解析
:
设蜘蛛跳出的水平初速度
v
0
=v
时
,
蜘蛛平抛轨迹正好与蛛丝
AB
相切
,
切点为
G
,
如图所示。过
C
点作水平线
CD
,
与
AB
的交点
E
即过
G
点速度反向延长线与水平位移的交点
,
则由几何关系
,
可知
AC=CE=ED=FG=EF
联立解得
v=
2
m/s
当蜘蛛跳出的水平初速度
v
0
≥
v
时
,
蜘蛛都能到达蛛丝
,
故
答案选
B
、
C
。
-
10
-
练
2
如图所示
,
轰炸机沿水平方向匀速飞行
,
到达山坡底端正上方时释放一颗炸弹
,
并垂直击中山坡上的目标
A
点。已知
A
点到水平地面的高度为
h
,
山坡倾角为
θ
,
由此可算出
(
)
A.
轰炸机的飞行高度
B.
轰炸机的飞行速度
C.
炸弹的飞行时间
D.
炸弹投出时的动能
ABC
-
11
-
解析
:
过
A
点作末速度反向延长线
,
交水平位移
OF
于
E
点
,
过
A
点作
OD
的垂线
AB
。则由几何关系易知
OD=OB+h
则轰炸机的飞行高度
OD
可求
,
由
y= gt
2
易得炸弹飞行时间
,
由
x=OF=AB=v
0
t
易得炸弹水平初速度
,
即轰炸机飞行速度。
至于炸弹动能
,
则还需要知道炸弹质量
,
题目未提供相关信息。