- 271.00 KB
- 2021-05-31 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第 2 章《机械波》单元测试
1.下列关于简谐运动和简谐波的说法,正确的是 ( )
A.媒质中质点振动的周期一定和相应的波的周期相等
B.媒质中质点振动的速度一定和相应的波的波速相等
C.波的传播方向一定和媒质中质点振动的方向一致
D.横波的波峰与波谷在振动方向上的距离一定是质点振幅的两倍
解析:波传播过程中每个质点都在前面质点的驱动力作用下做受迫振动,A
正确.波
速是波在介质中传播的速度,在同种均匀介质中波速是个常量;质点振动速
度随质
点振动所处位置不断变化,B、C 错误.波峰、波谷分别是平衡位置上方、下
方最大
位移处,而振幅是振动中偏离平衡位置的最大距离,D 正确.
答案:AD
2.如图 1 所示,实线为一列横波某时刻的波形图
象,这列波的传播速度为 0.25 m/s,经过时间
1 s 后的波形为虚线所示.那么这列波的传播
方向与这段时间内质点 P(x=0.1 m 处)所通过
的路程是 ( )
A.向左,10 cm B.向右,30 cm
C.向左,50 cm D.向右,70 cm
解析:波的传播距离 x=vt=0.25 m=5
4λ,故波向左传播,P 所通过的路程
为 5 倍振
幅,即 50 cm.
答案:C
3.一列简谐波沿 x 轴传播,某时刻的波形
如图 2 所示.关于波的传播方向与质点 a、b、c、d、e、
f 的运动情况,下列说法正确的是 ( )
A.若波沿 x 轴正方向传播,则质点 a 此时的速度方向与加速度方向相同
B.若波沿 x 轴正方向传播,再过半个周期,质点 b 将运动到质点 a 现在的位
置
C.若质点 c 此时的速度方向向下,则波沿 x 轴正方向传播
D.若质点 f 比质点 e 先回到平衡位置,则波沿 x 轴正方向传播
解析:若波沿 x 轴正方向传播,此时刻,质点 a 的速度方向沿 y 轴负方向,
加速度
方向也沿 y 轴负方向,故选项 A 正确.选项 B 中认为质点随波发生了平移,
故 B 错
误.如质点 c 此时刻向下运动,说明波沿 x 轴负方向传播,故选项 C 错误.若
质点
f 比质点 e 先回到平衡位置,说明该时刻质点 f 的速度方向沿 y 轴正方向,
可判断波
沿 x 轴负方向传播,故选项 D 错误.
答案:A
4.图 3 甲为一列横波在 t=1.0 s 时刻的波动图象,图乙为 P 处质点的振动图
象,则对
该波的传播速度和传播方向的说法正确的是 ( )
图 3
A.沿 x 轴正方向传播 B.沿 x 轴负方向传播
C.波速为 4 m/s D.波速为 6 m/s
解析:波动图象是 t=1.0s 时刻的,所以,从振动图象中也取 t=1.0s 时刻,
P 质点、
的振动方向沿 y 轴的负方向,由此得波是沿 x 轴正方向传播,又由波长为 4
m,周期
为 1.0 s,得波速是 4 m/s.
答案:BC
5.一简谐机械波沿 x 轴正方向传播,周期为 T,波长为 λ.若在 x=0 处
质点的振动图象如图 4 所示,则该波在 t=T/2 时刻的波形曲线为图 5 中的
( )
图 4
图 5
解析:根据振动图象可知,x=0 处的质点在 t=T/2 时刻在平衡位置,且向
下振动,
只有选项 A 中波的图象在 x=0 处的质点满足条件,故选 A.
答案:A
6.一列简谐横波沿 x 轴负方向传播,如图 6 所示,图甲是 t=1 s 时的波形图,
图乙是
波中某振动质点位移随时间变化的振动图线(两图用同一时间起点).则图乙
可能是图
甲中哪个质点的振动图线 ( )
图 6
A.x=0 处的质点 B.x=1 m 处的质点
C.x=2 m 处的质点 D.x=3 m 处的质点
解析:由振动图线知该质点在 t=1 s 时处于平衡位置且向 y 轴负方向运动,
在波形图
中,在 t=1 s 时处于平衡位置且沿 y 轴负方向运动的是 x=0 和 x=4 m 处的
质点.故
选项 A 正确.
答案:A
7.一列波长大于 1 m 的横波沿着 x 轴正方向传播.处在 x1=1 m 和 x2
=2 m 的两质点 A、B 的振动图象如图 7 所示.由此可知
( )
图 7
A.波长为 4
3m
B.波速为 1 m/s
C.3 s 末 A、B 两质点的位移相同
D.1 s 末 A 质点的振动速度大于 B 质点的振动速度
解析:由 A、B 两质点的的振动图象及传播可画出 t=0 时刻的
波动图象如图所示,由此可得 λ=4
3 m,A 正确;由振动图象得
周期 T=4 s,故 v=λ
T = 4
3 × 4 m/s=1
3 m/s,B 错误;由振动图
象知 3 s 末 A 质点位移为-2 cm,B 质点位移为 0,故 C 错误;由振动图象知
1 s 末
A 质点处于波峰,振动速度为零,B 质点处于平衡位置,振动速度最大,故 D
错误.
答案:A
8.如图 8 所示,在平面 xy 内有一沿水平 x 轴正方向
传播的简谐横波,波速为 3.0 m/s,频率为 2.5 Hz,
振幅为 8.0×10-2 m,已知 t=0 时刻 P 点质点的位
移为 y=4.0×10-2 m,速度沿 y 轴正方向,Q 点在
P 点 右 方 9.0×10 - 1 m 处 , 对 于 Q 点 的 质 点 来 说
( )
A.在 t=0 时,位移为 y=-4.0×10-2 m
B.在 t=0,速度沿 y 轴负方向
C.在 t=0.1 s 时,位移为 y=-4.0×10-2 m
D.在 t=0.1 s,速度沿 y 轴正方向
解析:由波速公式 v=fλ 可得波长 λ=v
f=3.0
2.5 m=1.2 m,P、
Q 间距 x
λ=0.9
1.2=3
4,即 x=3
4λ.
由题意可画出 t=0 时波形图如图所示,即 Q 点在该时刻速度
沿 y 轴负方向,B 正确.T=1
f=0.4 s,故 0.1 s=T
4,经 0.1 s,Q 点位移与原
来 P 点的
位移等大反向,故 C 正确.
答案:BC
9.某地区地震波中的横波和纵波传播速率分别约为 4 km/s 和
9 km/s.一种简易地震仪由竖直弹簧振子 P 和水平弹簧振子
H 组成(如图 9).在一次地震中,震源在地震仪下方,观察
到两振子相差 5 s 开始振动,则 ( )
A.P 先开始振动,震源距地震仪约 36 km
B.P 先开始振动,震源距地震仪约 25 km
C.H 先开始振动,震源距地震仪约 36 km
D.H 先开始振动,震源距地震仪约 25 km
解析:由两种波的传播速率可知,纵波先传到地震仪,设所需时间为 t,则
横波传到
地震仪的时间为(t+5) s.由位移关系可得 4(t+5)=9t,t=4 s,距离 l=
vt=36 km,
故 A 正确.
答案:A
10.川县发生了
8.0 级大地震,给我国造成了巨大的损失,地震以波的形式
传播,且有纵、横波之分.
(1)如图 10 所示是播图,其振
幅为 A,波长为 λ,某一时刻某质点 a 的坐标为(λ,0),经
四分之一周期该点的坐标是多少?
(2)地震时,地震波从震源向外传播,某计时器记录汶川地震发生的时间是 12
日下午
14 时 28 分,而北京感觉到震动的时间是 12 日下午 14 时 34 分,若汶川到北
京的直
线距离约为 1500 km,则地震波的传播速度约为多少?
解析:(1)由于波沿 x 轴正方向传播,由此可判断 a 点此时向下振动,经 1
4T,
则其位
移 y=-A,即再经 1
4T 时,a 点的坐标为(λ,-A).
(2)地震波匀速传播,由 v=x
t可知
v= 1500
6 × 60 km/s≈4 km/s
即地震波的传播速度大约为 4 km/s.
答案:(1)(λ,-A) (2)4 km/s
11.某同学用一根弹性绳进行机械波的实验.用手握住绳的一端做周期为 1 s
的简谐运
动,在绳上形成一列简谐波.以弹性绳为 x 轴,手握住的一端为坐标原点 O,
且从
波传到 x=1 m 处的 M 点开始计时,如图 11 所示,求:
图 11
(1)当时间 t 为多少时,平衡位置在 x=4.5 m 处的 N 质点恰好第一次从平衡
位置向 y
轴正方向运动?
(2)画出上问中 t 时刻弹性绳上的波形图.
解析:(1)由题图可知,λ=2 m,
则 v=λ
T =2 m/s
波从 M 点传到 N 点时间
t1=MN
v =3.5
2 s=1.75 s
绳上各点开始起振时,先向下运动,故 N 点向上通过平衡位置还需要 1
2T 的时
间.
故 t=t1+1
2T=1.75 s+0.5 s=2.25 s.
(2)t=2.25 s 时波形图如图所示.
答案:(1)2.25 s (2)见解析图
12.有两列简谐横波 a、b 在同一媒质中沿 x 轴正方向传播,波速均为 v=2.5
m/s,在
t=0 时,两列波的波峰正好在 x=2.5 m 处重合,如图 12 所示.
图 12
(1)求两列波的周期 Ta 和 Tb.
(2)求 t=0 时,两列波的波峰重合处的所有位置.
(3)分析并判断在 t=0 时是否存在两列波的波谷重合处.
某同学的分析如下:既然两列波的波峰存在重合处,那么波谷与波谷重合处
也一定
存在.只要找到这两列波半波长的最小公倍数,即可得到波谷与波谷重合处
的所有
位置.
你认为该同学的分析正确吗?若正确,求出这些点的位置.若不正确,指出
错误处
并通过计算说明理由.
解析:(1)从图中可以看出两列波的波长分别为 λa=2.5 m,λb=4.0 m,因
此它们的周
期分别为 Ta=λa
v =2.5
2.5 s=1 s Tb=λb
v =4.0
2.5 s=1.6 s
(2)两列波波长的最小公倍数为 s=20 m
t=0 时,两列波的波峰重合处的所有位置为
x=(2.5±20k) m (k=0,1,2,3,…)
(3)该同学的分析不正确.
要找两列波的波谷与波谷重合处,必须从波峰重合处出发,找到这两列波半
波长的
奇数倍恰好相等的位置.设距离 x=2.5 m 为 L 处两列波的波谷与波谷相遇,
并设
L=(2m-1)λa
2 L=(2n-1)λb
2
式中 m、n 均为正整数,只要找到相应的 m、n 即可.将 λ a=2.5 m、λb=
4.0 m 代入
并整理,得2m-1
2n-1=λb
λa=4.0
2.5=8
5
由于上式中 m、n 在整数范围内无解,所以不存在波谷与波谷重合处.
答案:(1)Ta=1 s Tb=1.6 s
(2)重合处位置 x=(2.5±20k)m(k=0,1,2,3,…)
(3)不正确,理由见解析
相关文档
- 2020学年高中物理 1.8 电容器与电2021-05-317页
- 2020高中物理第三章3节万有引力定2021-05-314页
- 河北省邢台市高中物理 第五章 交变2021-05-3111页
- 高中物理 第一章 电与磁1.6 洛伦兹2021-05-314页
- 高中物理 第2章 直流电路 2测电动2021-05-311页
- 高中物理 第3章 电磁振荡与电磁波 2021-05-311页
- 2020年高中物理 第三章 牛顿运动定2021-05-316页
- 2020高中物理 3.4 热力学第二定律 2021-05-319页
- 2019-2020学年高中物理阶段检测6原2021-05-316页
- 甘肃省永昌县第一中学高中物理 第12021-05-314页