- 2.30 MB
- 2021-05-31 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第
1
讲 力与物体的平衡
总纲目录
考点
1
整体法与隔离法在受力分析中的应用
考点
2
物体的动态平衡问题
考点
3
电学中的平衡
考点
4
平衡中的临界与极值问题
考点1 整体法与隔离法在受力分析中的应用
1.受力分析的一般步骤
2.受力分析的两大思维方法
1.(多选)如图所示,截面为三角形的木块
a
上放置一铁块
b
,三角形木块竖直边
靠在竖直且粗糙的墙面上,现用竖直向上的作用力
F
,推动木块与铁块一起向
上匀速运动,运动过程中铁块与木块始终保持相对静止,则下列说法正确的是
( )
A.木块
a
受到6个力的作用
B.木块
a
受到4个力的作用
C.铁块
b
受到3个力的作用
D.铁块
b
受到2个力的作用
答案
BC 先对
a
、
b
整体受力分析,竖直方向上受到重力和推力,二力平衡,
整体不受墙壁的弹力和摩擦力,后对
a
受力分析,受到重力、推力、
b
对
a
的压
力和静摩擦力,故
a
受到4个力的作用,故A错误,B正确;再对
b
受力分析,受到重
力、
a
对
b
的支持力和静摩擦力,三力平衡,即
b
受到3个力的作用,故C正确,D错
误。
2.(多选)如图所示,质量为
M
的斜面体
A
放在粗糙水平面上,用轻绳拴住质量为
m
的小球
B
置于斜面上,整个系统处于静止状态,已知斜面倾角及轻绳与竖直
方向夹角均为
θ
=30
°
。不计小球与斜面间的摩擦,则
( )
A.轻绳对小球的作用力大小为
mg
B.斜面体对小球的作用力大小为
mg
C.斜面体对水平面的压力大小为(
M
+
m
)
g
D.斜面体与水平面间的摩擦力大小为
mg
答案
AD 以小球
B
为研究对象,受力如图甲所示,由几何关系知
θ
=
β
=30
°
,根
据受力平衡可得
F
T
=
F
N
=
mg
。以斜面体
A
为研究对象,受力如图乙所示,由
受力平衡得
F
N1
=
Mg
+
F
N
' cos
θ
=
Mg
+
mg
,
F
f
=
F
N
' sin
θ
=
mg
。故B、C选项错
误,A、D选项正确。
3.如图所示,水平固定且倾角为37
°
(sin 37
°
=0.6,cos 37
°
=0.8)的光滑斜面上有
两个质量均为
m
=1 kg的小球
A
、
B
,它们用劲度系数为
k
=200 N/m的轻质弹簧
连接,弹簧的原长为
l
0
=20 cm,现对
B
施加一水平向左的推力
F
,使
A
、
B
均在斜
面上以加速度
a
=4 m/s
2
向上做匀加速运动,此时弹簧的长度
l
和推力
F
的大小
分别为
( )
A.0.15 m,25 N
B.0.25 m,25 N
C.0.15 m,12.5 N
D.0.25 m,12.5 N
答案
B 以小球
A
、
B
整体为研究对象,受力分析,沿斜面方向有:
F
cos 37
°
-2
mg
·sin 37
°
=2
ma
,解得
F
=25 N,以小球
A
为研究对象,沿斜面方向有:
kx
-
mg
sin 37
°
=
ma
,
x
=
l
-
l
0
,解得:
l
=0.25 m。故B正确,A、C、D错误。
方法技巧
整体法和隔离法的应用技巧
(1)不涉及系统内力时,优先考虑应用整体法,即“能整体、不隔离”。
(2)同样应用“隔离法”,也要先隔离“简单”的物体,如待求量少、受力少或处于边缘处的物体。
(3)实际问题通常需要交叉应用隔离、整体思维法。
(4)
各“隔离体”间的关联力,表现为作用力与反作用力,对整体则是系统内力。
(5)在某些特殊情形中,研究对象可以是物体的一部分,也可以是绳子的结
点、力的作用点等。
考点2 物体的动态平衡问题
1.共点力平衡的三条重要结论
(1)物体受三个共点力的作用而平衡,则任意两个力的合力一定与第三个力等
大、反向。
(2)物体受三个共点力的作用而平衡,将某一个力按力的效果分解,则其分力
和其他两个力满足平衡条件。
(3)物体受到三个或三个以上力的作用而平衡时,将物体所受的力分解为相互
垂直的两组,每组力都满足平衡条件。
2.解答动态平衡问题的三种方法
(1)“解析法”:如果物体受到多个力的作用,可进行正交分解,利用解析法,建
立平衡方程,根据自变量的变化确定因变量的变化。
(2)“图解法”:如果物体受到三个力的作用,其中一个力的大小、方向均不
变,并且还有另一个力的方向不变,此时可用图解法,画出不同状态下力的矢
量图,判断各个力的变化情况。
(3)“相似三角形法”:此法是图解法的特例,一般研究对象受绳(杆)或其他物
体的约束,且物体受到三个力的作用,其中的一个力大小、方向均不变,另外
两个力的方向都发生变化,可以用力三角形与几何三角形相似的方法。
方法一 解析法
1.(2018广东五校协作体联考)(多选)如图所示,物体
A
、
B
用细绳与轻弹簧连接
后跨过滑轮。物体
A
静止在倾角为45
°
的粗糙斜面上,物体
B
悬挂着。已知质
量
m
A
=3
m
B
,不计滑轮摩擦,现将斜面倾角由45
°
减小到30
°
,那么下列说法中正确
的是
( )
A.弹簧的弹力将增大
B.物体
A
对斜面的压力将增大
C.物体
A
受到的静摩擦力将减小
D.物体
A
可能被拉动
答案
BC 对物体
B
受力分析,受重力和拉力,由二力平衡得
T
=
m
B
g
,则知弹簧
的弹力不变,故A错误;当斜面倾角为45
°
时有3
m
B
g
sin 45
°
-
m
B
g
=
f
1
,当斜面倾角
为30
°
时有3
m
B
g
sin 30
°
-
m
B
g
<
f
1
,可见物体
A
并未被拉动,而且受到的静摩擦力将
减小,故D错误,C正确;物体
A
对斜面的压力
N
=
m
A
g
cos
θ
,
θ
减小,
N
将增大,故B正
确。
方法二 图解法
2.如图所示,小球用细绳系住,细绳的另一端固定于
O
点。现用水平力
F
缓慢推
动斜面体,小球在斜面上无摩擦地滑动,细绳始终处于直线状态,当小球升到
接近斜面顶端时细绳接近水平,此过程中斜面对小球的支持力
F
N
以及细绳对
小球的拉力
F
T
的变化情况是
( )
A.
F
N
先减小后增大
B.
F
N
不断减小
C.
F
T
不断增大
D.
F
T
先减小后增大
答案
D 由于用水平力
F
缓慢推动斜面体,故小球处于动态平衡状态。小球
受到大小和方向均不变的重力、方向不变的斜面支持力、方向和大小均变
化的细绳的拉力,三个力构成封闭的三角形,画出小球受力示意图如图所示。
当细绳与斜面平行时,细绳拉力
F
T2
与支持力方向垂直,细绳拉力最小。当小
球升到接近斜面顶端时细绳接近水平,细绳拉力为
F
T4
,所以
F
T
先减小后增大,
而此过程中斜面对小球的支持力
F
N
一直增大,选项D正确。
方法三 相似三角形法
3.如图所示,质量均可忽略的轻绳与轻杆承受弹力的最大值一定,杆的
A
端用
铰链固定,光滑轻质小滑轮在
A
点正上方,杆的
B
端吊一重力为
G
的重物,现将
绳的一端拴在杆的
B
端,用拉力
F
将
B
端缓慢上拉,在杆达到竖直前(杆和绳均
未断),关于绳子的拉力
F
和杆受到的弹力
F
N
的变化,下列判断正确的是
( )
A.
F
变大 B.
F
变小
C.
F
N
变大 D.
F
N
变小
答案
B 在用拉力将
B
端缓慢上拉的过程中,
B
点受轻绳向下的拉力(其大小
等于
G
)、沿
OB
方向的拉力
F
'(
F
'=
F
)以及轻杆对
B
点的弹力
F
N
'(
F
N
'=
F
N
)的作用,
由于
B
点处于动态平衡状态,且
F
'和
F
N
'的大小和方向均在发生变化,故可用力
三角形与几何三角形相似的方法进行解决。受力分析如图所示,由图可知,力
三角形与几何三角形
AOB
相似,即
=
=
,由于重力
G
和
O
、
A
两点间的
距离以及
AB
的长度均不变,故弹力
F
N
'不变,拉力
F
'变小,
F
N
不变,
F
变小。
考点3 电学中的平衡
涉及电场力、磁场力的平衡问题,首先准确进行受力分析,然后按照力学
分析方法进行分析即可,只不过多了电场力、磁场力而已。但要注意判断电
场力、磁场力的方向,学会把电学问题力学化。可按以下流程进行分析:
1.如图所示,可视为质点的两个带同种电荷的小球
a
和
b
,分别静止在竖直墙面
和水平地面上;
b
球被光滑竖直板挡住,所有接触面均光滑,
a
球由于缓慢漏电
而缓慢下降,在此过程中
( )
A.地面对
b
的支持力变小
B.竖直挡板对
b
的支持力变小
C.
a
、
b
间的作用力变大
D.以上说法均不正确
答案
C 对
a
、
b
整体而言,竖直方向受重力和地面的支持力,故支持力总等
于两球的重力之和,可知地面对
b
的支持力不变,选项A错误;对
a
受力分析如
图,受重力
G
、库仑力
F
和墙面的弹力
N
,当
a
球下移时,由受力图可知,
N
和
F
均
变大,选项C正确;对
a
、
b
整体,水平方向竖直挡板对
b
的支持力等于墙面对
a
的
弹力
N
,则竖直挡板对
b
的支持力变大,选项B错误。
2.如图所示,
PQ
和
MN
为水平平行放置的金属导轨,相距
L
=1 m。
PM
间接有一
个电动势为
E
=6 V、内阻
r
=1 Ω的电源和一只滑动变阻器。导体棒
ab
跨放在
导轨上,棒的质量为
m
=0.2 kg,棒的中点用细绳经定滑轮与一物体相连,物体的
质量
M
=0.3 kg。棒与导轨的动摩擦因数为
μ
=0.5(设最大静摩擦力与滑动摩擦
力相等,导轨与棒的电阻不计,
g
取10 m/s
2
),匀强磁场的磁感应强度
B
=2 T,方向
竖直向下。为了使物体保持静止,滑动变阻器连入电路的阻值不可能的是
( )
A.6 Ω B.5 Ω
C.4 Ω D.2 Ω
答案
A 据题意,当棒受到的摩擦力向左且最大时,有
F
+
F
f
=
Mg
,由于
F
f
=
μmg
=1 N,则安培力为
F
=2 N,据
F
=
BIL
=
BL
·
可得,
R
=5 Ω,当棒受到的摩擦力向
右且最大时,有
Mg
+
F
f
=
BLI
=
BL
·
,解得
R
=2 Ω,故滑动变阻器阻值变化范围
为2~5 Ω,故选项A不可能。
3.(多选)如图所示,绝缘水平地面上固定一个光滑绝缘斜面体,斜面与水平面
的夹角
θ
=30
°
。一根轻质绝缘细线的一端固定在斜面顶端,另一端系有一个
带电小球
A
,细线与斜面平行,且小球
A
正好静止在斜面中点。在小球
A
的正下
方地面处固定放置一带电小球
B
,两球相距为
d
。已知两球的质量均为
m
、电
荷量均为+
q
,静电力常量为
k
,重力加速度为
g
,两球均可视为点电荷。则下列
说法正确的是
( )
A.两球之间的库仑力
F
=
k
B.当
=
时,斜面对小球
A
的支持力为
C.当
=
时,细线上拉力为0
D.将小球
B
移到斜面体底面左端
C
点,当
=2
时,斜面对小球
A
的支持力为0
答案
ABD 依据库仑定律,得两球之间的库仑力大小为
F
=
k
,故A正确;当
=
时,则有
k
=
mg
,对球
A
受力分析,如图甲所示,根据矢量的合成法则,
由几何知识,得支持力
N
=
,拉力
T
=
,故B正确,C错误;当小球
B
移到斜面
体底面左端
C
点,对球
A
受力分析,如图乙所示,依据几何关系可知,
T
与
F
的夹角
为120
°
,小球
A
、
B
间的距离为2
d
,当
=2
时,
F
=
mg
,根据矢量合成法则,
T
与
F
的合力与重力等大反向,则斜面对小球
A
的支持力为
N
=0,故D正确。
考点4 平衡中的临界与极值问题
1.临界问题:当某物理量变化时,会引起其他几个物理量的变化,从而使物体所
处的平衡状态“恰好出现”或“恰好不出现”,在问题的描述中常用“刚
好”“刚能”“恰好”等语言叙述。
2.
极值问题
:
平衡中的极值问题
,
一般指在力的变化过程中的最大值和最小值
问题。
3.解决动态平衡、临界与极值问题的常用方法
(1)解析法:利用物体受力平衡写出未知量与已知量的关系表达式,根据已知
量的变化情况来确定未知量的变化情况,利用临界条件确定未知量的临界
值。
(2)图解法:根据已知量的变化情况,画出平行四边形的边角变化,确定未知量
大小、方向的变化,确定未知量的临界值。
1.如图所示,滑块
A
置于水平地面上,滑块
B
在一水平力作用下紧靠滑块
A
(
A
、
B
接触面竖直),此时
A
恰好不滑动,
B
刚好不下滑。已知
A
与
B
间的动摩擦因数
为
μ
1
,
A
与地面间的动摩擦因数为
μ
2
,最大静摩擦力等于滑动摩擦力。
A
与
B
的
质量之比为
( )
答案
B 对滑块
A
、
B
整体分析,在水平方向上有
F
=
μ
2
(
m
A
+
m
B
)
g
;对滑块
B
分
析,在竖直方向上有
μ
1
F
=
m
B
g
;联立解得
=
,选项B正确。
2.(2018黑龙江大庆模拟)(多选)如图所示,一根轻绳上端固定在
O
点,下端拴一
个重力为
G
的小球,开始时轻绳处于竖直状态,轻绳所能承受的最大拉力为
2
G
,现对小球施加一个方向始终水平向右的力
F
,使球缓慢地移动,则在小球缓
慢地移动过程中,下列说法正确的是
( )
A.力
F
逐渐增大
B.力
F
的最大值为
G
C.力
F
的最大值为2
G
D.轻绳与竖直方向夹角最大值
θ
=30
°
答案
AB 对小球受力分析,如图甲,由平衡条件得
F
=
G
tan
θ
,
θ
逐渐增大,则
F
逐渐增大,故A正确;如图乙,小球缓慢地移动过程中,
θ
逐渐增大,
F
T
的最大值为
2
G
,则可得cos
θ
=
=
,
θ
=60
°
,此时
F
达到最大值为
G
,故B正确,C、D错误。
3.(2018山东淄博实验中学诊考)如图甲所示,质量为
m
的半球体静止在倾角为
θ
的平板上,当
θ
从0缓慢增大到90
°
的过程中,半球体所受摩擦力
F
f
与
θ
的关系
如图乙所示,已知半球体始终没有脱离平板,半球体与平板间的动摩擦因数为
,最大静摩擦力与滑动摩擦力相等,重力加速度为
g
,则
( )
A.
O
~
q
段图像可能是直线 B.
q
=
C.
q
~
段图像可能是直线 D.
p
=
答案
D 半球体在平板上恰好开始滑动的临界条件是
mg
sin
θ
=
μmg
cos
θ
,
故有
μ
=tan
θ
,解得
θ
=
,即
q
=
,故B错误。
θ
在0~
之间时,
F
f
是静摩擦力,大小
为
mg
sin
θ
;
θ
在
~
之间时,
F
f
是滑动摩擦力,大小为
μmg
cos
θ
;综合以上分析
得其
F
f
与
θ
关系如图中实线所示,故A、C错误。当
θ
=
时,
F
f
=
mg
sin
=
,即
p
=
,故D正确。
1.(2017课标Ⅱ,16,6分)如图,一物块在水平拉力
F
的作用下沿水平桌面做匀速
直线运动。若保持
F
的大小不变,而方向与水平面成60
°
角,物块也恰好做匀速
直线运动。物块与桌面间的动摩擦因数为
( )
A.2-
B.
C.
D.
答案
C 物块在水平力
F
作用下做匀速直线运动,其受力如图甲所示
由平衡条件:
F
=
f
、
F
N
=
mg
而
f
=
μF
N
=
μmg
即
F
=
μmg
当
F
的方向与水平面成60
°
角时,其受力如图乙
由平衡条件:
F
cos 60
°
=
f
1
f
1
=
μF
N1
=
μ
(
mg
-
F
sin 60
°
)
联立解得
μ
=
,选项C正确。
2.(2017课标Ⅲ,17,6分)一根轻质弹性绳的两端分别固定在水平天花板上相距
80 cm的两点上,弹性绳的原长也为80 cm。将一钩码挂在弹性绳的中点,平衡
时弹性绳的总长度为100 cm;再将弹性绳的两端缓慢移至天花板上的同一点,
则弹性绳的总长度变为(弹性绳的伸长始终处于弹性限度内)
( )
A.86 cm B.92 cm C.98 cm D.104 cm
答案
B 设总长度为100 cm时与水平方向夹角为
θ
,则cos
θ
=
,故
θ
=37
°
。总
长度为100 cm时弹力
F
=
kx
1
,设移至天花板同一点时的弹力为
kx
2
,则
kx
1
sin
θ
=
kx
2
,得
x
2
=12 cm,则弹性绳的总长度为92 cm。故B项正确。
3.(2017课标Ⅰ,21,6分)(多选)如图,柔软轻绳
ON
的一端
O
固定,其中间某点
M
拴
一重物,用手拉住绳的另一端
N
。初始时,
OM
竖直且
MN
被拉直,
OM
与
MN
之间
的夹角为
α
(
α
>
)。现将重物向右上方缓慢拉起,并保持夹角
α
不变。在
OM
由
竖直被拉到水平的过程中
( )
A.
MN
上的张力逐渐增大
B.
MN
上的张力先增大后减小
C.
OM
上的张力逐渐增大
D.
OM
上的张力先增大后减小
答案
AD 本题考查动态平衡。重物受到重力
mg
、
OM
绳的拉力
F
OM
、
MN
绳的拉力
F
MN
共三个力的作用。缓慢拉起过程中任一时刻可认为是平衡状态,
三力的合力恒为0。如图所示,由三角形定则得一首尾相接的闭合三角形,由
于
α
>
且不变,则三角形中
F
MN
与
F
OM
的交点在一个优弧上移动,由图可以看出,
在
OM
被拉到水平的过程中,绳
MN
中拉力一直增大且恰好达到最大值,绳
OM
中拉力先增大后减小,故A、D正确,B、C错误。
4.(2016课标Ⅱ,14,6分)质量为
m
的物体用轻绳
AB
悬挂于天花板上。用水平向
左的力
F
缓慢拉动绳的中点
O
,如图所示。用
T
表示绳
OA
段拉力的大小,在
O
点
向左移动的过程中
( )
A.
F
逐渐变大,
T
逐渐变大 B.
F
逐渐变大,
T
逐渐变小
C.
F
逐渐变小,
T
逐渐变大 D.
F
逐渐变小,
T
逐渐变小
答案
A 由题意知,系统处于动态平衡状态,分析
O
点的受力情况如图所示,
其中
T
'=
G
恒定不变,
F
方向不变,
T
大小方向均改变,在
O
点向左移动的过程中,
θ
角逐渐变大,由动态矢量三角形可知
F
、
T
均逐渐变大,故A项正确。
5.(2016课标Ⅰ,19,6分)(多选)如图,一光滑的轻滑轮用细绳
OO
'悬挂于
O
点;另
一细绳跨过滑轮,其一端悬挂物块
a
,另一端系一位于水平粗糙桌面上的物
块
b
。外力
F
向右上方拉
b
,整个系统处于静止状态。若
F
方向不变,大小在一
定范围内变化,物块
b
仍始终保持静止,则
( )
A.绳
OO
'的张力也在一定范围内变化
B.物块
b
所受到的支持力也在一定范围内变化
C.连接
a
和
b
的绳的张力也在一定范围内变化
D.物块
b
与桌面间的摩擦力也在一定范围内变化
答案
BD 系统处于静止状态,连接
a
和
b
的绳的张力大小
T
1
等于物块
a
的重
力
G
a
,C项错误;以
O
'点为研究对象,受力分析如图甲所示,
T
1
恒定,夹角
θ
不变,由
平衡条件知,绳
OO
'的张力
T
2
恒定不变,A项错误;以
b
为研究对象,受力分析如
图乙所示,则
F
N
+
T
1
cos
θ
+
F
sin
α
-
G
b
=0,
f
+
T
1
sin
θ
-
F
cos
α
=0,
F
N
、
f
均随
F
的变化而变化,故B、D项正确。
6.(2016课标Ⅲ,17,6分)如图,两个轻环
a
和
b
套在位于竖直面内的一段固定圆
弧上;一细线穿过两轻环,其两端各系一质量为
m
的小球。在
a
和
b
之间的细线
上悬挂一小物块。平衡时,
a
、
b
间的距离恰好等于圆弧的半径。不计所有摩
擦。小物块的质量为
( )
A.
B.
m
C.
m
D.2
m
答案
C 由于物块通过挂钩悬挂在线上,细线穿过圆环且所有摩擦都不计,
可知线上各处张力都等于小球重力
mg
。如图所示,由对称性可知
a
、
b
位于同
一水平线上,物块处于圆心
O
点正上方,则∠1=∠2,∠3=∠4,∠1=∠5。因圆弧
对轻环的弹力沿圆弧半径方向,且轻环重力不计,由平
衡条件知环两侧细线关于圆弧半径对称,即∠5=∠6,
由几何关系得∠1=∠2=∠5=∠6=30
°
,∠3=∠4=60
°
。
再由物块与挂钩的受力平衡有
mg
cos 60
°
+
mg
cos 60
°
=
Mg
,故有
M
=
m
,C正确。