• 182.00 KB
  • 2021-05-31 发布

【物理】2020届二轮复习专题五2科学思维篇2 活用“三大观点”解析电磁学综合问题作业(京津鲁琼专用)

  • 5页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎1.如图所示,在水平线ab的下方有一匀强电场,电场强度为E,方向竖直向下,ab的上方存在匀强磁场,磁感应强度为B,方向垂直纸面向里.磁场中有一内、外半径分别为R、R的半圆环形区域,外圆与ab的交点分别为M、N.一质量为m、电荷量为q的带负电粒子在电场中P点静止释放,由M进入磁场,从N射出.不计粒子重力.‎ ‎(1)求粒子从P到M所用的时间t;‎ ‎(2)若粒子从与P同一水平线上的Q点水平射出,同样能由M进入磁场,从N射出.粒子从M到N的过程中,始终在环形区域中运动,且所用的时间最少,求粒子在Q时速度v0的大小.‎ 解析:(1)设粒子在磁场中运动的速度大小为v,所受洛伦兹力提供向心力,有 qvB=m ①‎ 设粒子在电场中运动所受电场力为F,有 F=qE ②‎ 设粒子在电场中运动的加速度为a,根据牛顿第二定律有 F=ma ③‎ 粒子在电场中做初速度为零的匀加速直线运动,有 v=at ④‎ 联立①②③④式得 t=. ⑤‎ ‎(2) 粒子进入匀强磁场后做匀速圆周运动,其周期与速度、半径无关,运动时间只由粒子所通过的圆弧所对的圆心角的大小决定.故当轨迹与内圆相切时,所用的时间最短.设粒子在磁场中的轨迹半径为r′,由几何关系可得 ‎ (r′-R)2+(R)2=r′2 ⑥‎ 设粒子进入磁场时速度方向与ab的夹角为θ,即圆弧所对圆心角的一半,由几何关系知 tan θ= ⑦‎ 粒子从Q射出后在电场中做类平抛运动,在电场方向上的分运动和从P释放后的运动情况相同,所以粒子进入磁场时沿竖直方向的速度同样为v.在垂直于电场方向上的分速度始终等于v0,由运动的合成和分解可得 tan θ= ⑧‎ 联立①⑥⑦⑧式得 v0=.‎ 答案:见解析 ‎2.(2018·高考全国卷Ⅱ) 一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy平面内的截面如图所示:中间是磁场区域,其边界与y轴垂直,宽度为l,磁感应强度的大小为B,方向垂直于xOy平面;磁场的上、下两侧为电场区域,宽度均为l′,电场强度的大小均为E,方向均沿x轴正方向;M、N为条状区域边界上的两点,它们的连线与y轴平行.一带正电的粒子以某一速度从M点沿y轴正方向射入电场,经过一段时间后恰好以从M点入射的速度从N点沿y轴正方向射出.不计重力.‎ ‎(1)定性画出该粒子在电磁场中运动的轨迹;‎ ‎(2)求该粒子从M点入射时速度的大小;‎ ‎(3)若该粒子进入磁场时的速度方向恰好与x轴正方向的夹角为,求该粒子的比荷及其从M点运动到N点的时间.‎ 解析:(1)粒子运动的轨迹如图(a)所示.(粒子在电场中的轨迹为抛物线,在磁场中为圆弧,上下对称)‎ ‎   ‎ 图(a) 图(b)‎ ‎(2)粒子从电场下边界入射后在电场中做类平抛运动.设粒子从M点射入时速度的大小为v0,在下侧电场中运动的时间为t,加速度的大小为a;粒子进入磁场的速度大小为v,方向与电场方向的夹角为θ[见图(b)],速度沿电场方向的分量为v1.根据牛顿第二定律有 qE=ma ①‎ 式中q和m分别为粒子的电荷量和质量.由运动学公式有v1=at②‎ l′=v0t ③‎ v1=vcos θ ④‎ 粒子在磁场中做匀速圆周运动,设其运动轨道半径为R,由洛伦兹力公式和牛顿第二定律得 qvB= ⑤‎ 由几何关系得l=2Rcos θ ⑥‎ 联立①②③④⑤⑥式得 v0=. ⑦‎ ‎(3)由运动学公式和题给数据得 v1=v0cot ⑧‎ 联立①②③⑦⑧式得 = ⑨‎ 设粒子由M点运动到N点所用的时间为t′,则 t′=2t+T ⑩‎ 式中T是粒子在磁场中做匀速圆周运动的周期 T= ⑪‎ 由③⑦⑨⑩⑪式得 t′=(1+).‎ 答案:见解析 ‎3.同一水平面上的两根正对平行金属直轨道MN、M′N′,如图所示放置,两轨道之间的距离l=0.5 m.轨道的MM′端之间接一阻值R=0.4 Ω的定值电阻,轨道的电阻可忽略不计,NN′端与两条位于竖直面内的半圆形光滑金属轨道NP、N′P′平滑连接,两半圆轨道的半径均为R0=0.5 m,水平直轨道MK、M′K′段粗糙,KN、K′N′段光滑,且KNN′K′区域恰好处于竖直向下的匀强磁场中,磁感应强度B=0.64 T,磁场区域的宽度d=1 m,且其右边界与NN′重合,现有一质量m=0.2 kg、电阻r=0.1 Ω的导体杆ab静止在距磁场左边界s=2 m处,在与杆垂直的水平恒力F=2 N作用下开始运动,导体杆ab与粗糙导轨间的动摩擦因数μ=0.1,当运动至磁场的左边界时撤去F,结果导体杆ab恰好能通过半圆形轨道的最高处PP′.已知导体杆在运动过程中与轨道始终垂直且接触良好,取g=10 m/s2.求:‎ ‎(1)导体杆刚进入磁场时,通过导体杆的电流大小和方向;‎ ‎(2)导体杆穿过磁场的过程中通过电阻R的电荷量;‎ ‎(3)导体杆穿过磁场的过程中整个电路中产生的焦耳热.‎ 解析:(1)设导体杆在F的作用下运动至磁场的左边界时的速度为v1,由动能定理有 ‎(F-μmg)s=mv-0,‎ 代入数据解得v1=6 m/s,‎ 导体杆刚进入磁场时产生的感应电动势 E=Blv1=1.92 V,‎ 此时通过导体杆的电流I==3.84 A,‎ 根据右手定则可知,电流方向由b向a.‎ ‎(2)设导体杆在磁场中运动的时间为t,产生的感应电动势的平均值为E,则由法拉第电磁感应定律有 E==,‎ 通过电阻R的感应电流的平均值I=,‎ 通过电阻R的电荷量q=IΔt==0.64 C.‎ ‎(3)设导体杆离开磁场时的速度大小为v2,运动到半圆形轨道最高处的速度为v3,因导体杆恰好能通过半圆形轨道的最高处,则在轨道最高处时,由牛顿第二定律有 mg=m,‎ 代入数据解得v3= m/s,‎ 杆从NN′运动至PP′的过程,根据机械能守恒定律有 mv=mv+mg·2R0,‎ 代入数据解得v2=5 m/s,‎ 导体杆穿过磁场的过程中损失的机械能 ΔE=mv-mv=1.1 J,‎ 此过程中电路中产生的焦耳热Q热=ΔE=1.1 J.‎ 答案:(1)3.84 A 由b向a (2)0.64 C (3)1.1 J ‎4.(2019·烟台模拟)如图甲所示,相距L=1 m的两根足够长的光滑平行金属导轨倾斜放置,与水平面夹角θ=37°,导轨电阻不计,质量m=1 kg、电阻为r=0.5 Ω的导体棒ab垂直于导轨放置,导轨的PM两端接在外电路上,定值电阻阻值R=1.5 Ω,电容器的电容C=0.5 F,电容器的耐压值足够大,导轨所在平面内有垂直于导轨平面斜向上的匀强磁场.在开关S1闭合、S2断开的状态下将导体棒ab由静止释放,导体棒的v-t图象如图乙所示,重力加速度g=10 m/s2.‎ ‎(1)求磁场的磁感应强度大小B;‎ ‎(2)在开关S1闭合、S2断开的状态下,当导体棒下滑的距离x=5 m时,定值电阻产生的焦耳热为21 J,此时导体棒的速度与加速度分别是多大?‎ ‎(3)现在开关S1断开、S2闭合,由静止释放导体棒,求经过t=2 s时导体棒的速度.‎ 解析:(1)由题图可知,导体棒的最大速度vm=3 m/s 对应的感应电动势E=BLvm 感应电流I= 当导体棒的速度达到最大时,导体棒受力平衡,则 BIL=mgsin θ 解得B==2 T.‎ ‎(2)导体棒和电阻串联,由公式Q=I2Rt可知,‎ Qab∶QR=1∶3‎ 则导体棒ab产生的焦耳热Qab=×21 J=7 J 导体棒下滑x=5 m的距离,导体棒减少的重力势能转化为动能和回路中的焦耳热,由能量守恒定律有 mgxsin θ=mv+Qab+QR 得导体棒的速度v1=2 m/s 此时感应电动势E1=BLv1,感应电流I1= 对导体棒有mgsin θ-BI1L=ma1‎ 解得加速度a1=2 m/s2.‎ ‎(3)开关S1断开、S2闭合时,任意时刻对导体棒,根据牛顿第二定律有mgsin θ-BIL=ma2‎ 感应电流I=,Δq=CΔU Δt时间内,有ΔU=ΔE=BLΔv,a2= 解得a2=2 m/s2‎ 表明导体棒ab下滑过程中加速度不变,ab棒做匀加速直线运动,t=2 s时导体棒的速度v2=a2t=4 m/s.‎ 答案:(1)2 T (2)2 m/s 2 m/s2 (3)4 m/s

相关文档