- 834.00 KB
- 2021-06-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
张家港高级中学高二物理期中考试试卷
一.单选题
1.下列说法中正确的是( )
A. 在某电源的电路中,每通过2 C的电荷量,电源提供的电能是4 J,那么这个电源的电动势是0.5V
B. 电源电动势表征电源把其它形式能转化为电能的本领,与是否接外电路无关
C. 若电流元在磁场中某点不受安培力作用,则该点的磁感应强度为零
D. 磁场中某处磁感应强度的方向,与通电导线在该处所受磁场力的方向相同
【答案】B
【解析】
【详解】A.根据可知,在某电源的电路中,每通过2 C的电荷量,电源提供的电能是4 J,那么这个电源的电动势是2V,选项A错误;
B.电源电动势表征电源把其它形式能转化为电能本领,与是否接外电路无关,选项B正确;
C.若电流元在磁场中某点不受安培力作用,可能是电流与磁场平行,该点的磁感应强度不一定为零,选项C错误;
D.磁场中某处磁感应强度的方向,与通电导线在该处所受磁场力的方向垂直,选项D错误.
2.电阻R和电动机M串联接到电路时,如图所示,已知电阻R跟电动机线圈的电阻值相等,电键接通后,电动机正常工作.设电阻R和电动机M两端的电压分别为U1和U2,经过时间t,电流通过电阻R做功为W1,产生热量Q1,电流通过电动机做功为W2,产生热量为Q2,则有( )
A. U1Q2 D. W1Q2,与结论不相符,选项C错误;
D.W1P2 C. η1>η2 D. η1<η2
【答案】AC
【解析】
【详解】由电源U-I图象读出电动势E=6V,两图线的交点就表示该电源和该电阻组成闭合电路时的工作状态;电源的输出功率分别为:P1=U1I1=4×2=8W,P2=U2I2=2×4=8W,故P1=P2,故A正确,B错误;电源的效率:,,故η1>η2,故C正确,D错误;故选AC.
【点睛】本题是对电源和电阻伏安特性曲线的结合,关键明确两图线的交点就表示该电源和该电阻组成闭合电路时的工作状态,能直接电流和路端电压,求出电源的输出功率.
12.如图所示,在x>0、y>0的空间中有恒定的匀强磁场,磁感应强度的方向垂直于xOy平面向里,大小为B.现有一个质量为m、电荷量为q的带正电的粒子,从在x轴上的某点P沿着与x轴成30°角的方向射入磁场.不计重力,则下列说法正确的是
A. 粒子在磁场中运动所经历的时间可能为
B. 粒子在磁场中运动所经历的时间可能为
C. 粒子在磁场中运动所经历的时间可能为
D. 粒子一定不能通过坐标原点
【答案】ACD
【解析】
【详解】ABC、由于P点的位置不定,所以粒子在磁场中的运动圆弧对应的圆心角也不同,最大的圆心角时圆弧与y轴相切时即300°,则运动的时间为;而最小的圆心角为P点从坐标原点出发,圆心角为120°,所以运动时间为,故粒子在磁场中运动所经历的时间为,故AC正确,B错误;
D、粒子由P点成30°角入射,则圆心在过P点与速度方向垂直的方向上,如图所示
粒子在磁场中要想到达O点,转过的圆心角肯定大于180°,而因磁场为有界,故粒子不可能通过坐标原点,故D正确;
故选ACD.
【点睛】由于P点的位置不定,所以粒子在磁场中的运动圆弧对应的圆心角也不同,最大的圆心角时圆弧与y轴相切时即300°,而最小的圆心角为P点从坐标原点出发,圆心角为120°.
13.霍尔式位移传感器的测量原理是:如图所示,有一个沿Z轴方向的磁场,磁感应强度、k
均为常数,将传感器固定在物体上,保持霍尔元件的电流不变方向如图中箭头所示.当物体沿z轴方向移动时,由于位置不同,霍尔元件在y轴方向的上下表面的电势差U也不同,则
A. 磁感应强度B越大,上下表面的电势差U越小
B. k越大,传感器灵敏度越高
C. 若图中霍尔元件是电子导电,则下板电势高
D. 电流I取值越大,上下表面的电势差U越大
【答案】BD
【解析】
【详解】AD.最终电子在电场力和洛伦兹力的作用下处于平衡,设霍尔元件的长宽高分别为a、b、c,有
电流的微观表达式为
I=nqvS=nqvbc
所以
B越大,上、下表面的电势差U越大.电流越大,上、下表面的电势差U越大.故A错误,D正确.
B.k越大,根据磁感应强度B=B0+kz,知B随z的变化率越大,根据.知,U随z的变化率越大,即传感器灵敏度 越高.故B正确.
C.霍尔元件中移动的是自由电子,根据左手定则,电子向下表面偏转,所以上表面电势高.故C错误.
14.回旋加速器的核心部分如图所示,两个D形盒分别与交变电源的两极相连.下列说法正确的是( )
A. D形盒之间电场力使粒子加速
B. D形盒内的洛伦兹力使粒子加速
C. 增大交变电压的峰值,最终获得的速率v增大
D. 增大磁感应强度,最终获得的速率v增大
【答案】AD
【解析】
【详解】带电粒子在D形盒的中间缝隙中受电场力作用,使粒子加速,选项A 正确;D形盒内的洛伦兹力只是使带电粒子的速度方向发生改变,不能使粒子加速,选项B 错误;设D形盒的半径为R,则当粒子加速结束时满足:,即,故增大磁感应强度,最终获得的速率v增大,选项C 错误,D正确.
三、实验题
15.如图所示,是“研究电磁感应现象”的实验装置.
(1)将图中所缺导线补充完整.
( )
(2)如果在闭合开关时发现灵敏电流计的指针向右偏了一下,那么合上开关后,将原线圈迅速插入副线圈中,电流计指针将________填“向左偏”或“向右偏”.
(3)原线圈插入副线圈后,将滑动变阻器滑片迅速向左移动时,电流计指针将________填“向左偏”或“向右偏”
【答案】 (1). 连线图见解析 (2). 向右偏 (3). 向左偏
【解析】
【详解】(1)[1].电路连线如图:
(2)[2].闭合开关,穿过副线圈的磁通量增大,灵敏电流表的指针向右偏;将原线圈迅速插入副线圈中,磁场方向不变,穿过大线圈的磁通量增大,灵敏电流计指针将向右偏转.
(3)[3].将小线圈插入大线圈后,将滑动变阻器滑片迅速向左移动时,,滑动变阻器接入电路的阻值变大,原线圈电流变小,穿过大线圈的磁场方向不变,但磁通量变小,灵敏电流计指针将左偏转.
16.某同学想描绘某一热敏电阻的伏安特性曲线,实验室提供下列器材:
A.电压表V(量程为0~5V,内阻约5kΩ)
B.电流表A1(量程为0~25mA,内阻约0.2Ω)
C.电流表A2(量程为0~0.6A,内阻约0.1Ω)
D.滑动变阻器R1(0~10Ω,额定电流1.5A);
E.滑动变阻器R2(0~1000Ω,额定电流0.5A)
F.直流电源(电动势6V,内阻忽略不计)
G.电键一个、导线若干
(1)该小组同学用螺旋测微器和游标卡尺分别测量了该元件的直径及长度,测量情况如下图所示,则该笔芯的直径为d=___________mm,L=____________cm.
(2)该同学选择了适当的器材组成描绘伏安特性曲线的电路,请在下面的方框中画出此实验的电路图.(热敏电阻符号为 )
(3)该同学在实验中得到热敏电阻电压和电流的7组数据(如下表),
电压U(V)
0.0
10
2.0
2.4
3.0
3.6
4.0
电流I(mA)
00
1.6
5.8
8.0
11.8
16.0
20.0
请你在方格纸上作出热敏电阻的伏安特性曲线.
(4)由此曲线可知,该热敏电阻的阻值随电压的增大而_______(选填“增大”或“减小”).该同学选择的电流表是______(选填“B”或“C”),选择的滑动变阻器是____(选填“D”或“E”)
【答案】 (1). 4.685mm 1.455cm (2). 电路图见解析 (3). 伏安特性曲线见解析 (4). 减小 B D
【解析】
【详解】(1)[1][2].该笔芯的直径为d=4.5mm+0.01mm×18.5=4.685mm;
L=1.4cm+0.05mm×11=1.455cm.
(2)[3].由表中数据可知电流的变化范围为0-20mA,所以电流表选择B,滑动变阻器的特点是:电阻大的调节精度低,电阻变化快,操作不方便,故选小电阻的,故选D;该实验中由于需要测量较多的数据,因此滑动变阻器采用分压接法,由于热敏电阻阻值较大,因此安培表采用内接法,电路图如图所示:
(3)[4].作出热敏电阻的伏安特性曲线如图;
(4)[5][6][7].图象中曲线的斜率表示电阻的倒数,所以热敏电阻的阻值随电压的增大而减小;由表中数据可知电流的变化范围为0-20mA,所以电流表选择B;为了便于调节滑动变阻器,应在安全的情况下选最大阻值较小的D.
四、计算题
17.如图所示,两平行金属导轨间的距离,金属导轨所在的平面与水平面夹角,在导轨所在平面内,分布着磁感应强度,方向垂直于导轨所在平面的匀强磁场金属导轨的一端接有电动势、内阻的直流电源;现把一个质量的导体棒ab放在金属导轨上,导体棒恰好静止导体棒与金属导轨垂直、且接触良好,导体棒与金属导轨接触的两点间的电阻,金属导轨电阻不计,g取已知,求:
(1)通过导体棒的电流;
(2)导体棒受到的安培力;
(3)导体棒受到的摩擦力;
(4)若将磁场方向改为竖直向上,要使金属杆继续保持静止,且不受摩擦力左右,求此时磁场磁感应强度的大小?
【答案】(1)1.5A;(2)0.30 N,沿斜面向上;(3)0.06N.(4)0.5T
【解析】
【详解】(1)根据闭合电路欧姆定律得:
(2)导体棒受到的安培力为:
F安=BIL=0.30 N.
由左手定则可知,安培力沿斜面向上
(3)对导体棒受力分析如图,将重力正交分解,沿导轨方向有:
F1=mgsin 37°=0.24 N
F1<F安,根据平衡条件可知,摩擦力沿斜面向下
mgsin 37°+f=F安
解得:
f=0.06 N.
(4)当B的方向改为竖直向上时,这时安培力的方向变为水平向右,则
B2IL=mgtan α
B2=0.5T
18.如图所示,一带电微粒质量为、电荷量,从静止开始经电压为的电场加速后,水平进入两平行金属板间的偏转电场中,微粒射出电场时的偏转角,并接着沿半径方向近入一个垂直纸面向外的圆形匀强磁场区域,微粒射出磁场时的偏转角也为。已知偏转电场中金属板长,圆形匀强磁场的半径为,重力忽略不计。求;
(1)带电微粒经加速电场后的速度大小;
(2)两金属板间偏转电场的电场强度E的大小;
(3)匀强磁场的磁感应强度B的大小。
【答案】(1)(2)2000V/m(3)0.13T
【解析】
【详解】(1)带电微粒经加速电场加速后速度为v1,根据动能定理
代入数据解得
(2)带电微粒在偏转电场中只受电场力作用,做类平抛运动.在水平方向微粒做匀速直线运动,水平方向
带电微粒在竖直方向做匀加速直线运动,加速度为a,出电场时竖直方向速度为v2,竖直方向
,
由几何关系
联立解得
由题可知,,则有
(3)设带电粒子进磁场时的速度大小为v,则
由粒子运动的对称性可知,入射速度方向过磁场区域圆心,则出射速度反向延长线过磁场区域圆心,粒子在磁场中的运动轨迹如图所示,则轨迹半径为:
由
解得
19.如图所示,在xOy平面的y轴左侧存在沿y轴正方向的匀强电场,y轴右侧区域Ⅰ内存在磁感应强度大小、方向垂直纸面向外的匀强磁场,区域Ⅰ、区域Ⅱ的宽度均为L,高度均为质量为m、电荷量为的带电粒子从坐标为的A点以速度沿方向射出,恰好经过坐标为的C点射入区域Ⅰ粒子重力忽略不计.
(1)求匀强电场的电场强度大小E;
(2)求粒子离开区域Ⅰ时的位置坐标;
(3)要使粒子从区域Ⅱ上边界离开磁场,可在区域Ⅱ内加垂直纸面向内的匀强磁场试确定磁感应强度B的大小范围.
【答案】(1) (2)x=L,y=0(3)
【解析】
【详解】(1)带电粒子在匀强电场中做类平抛运动
则有:
x轴方向:
2L=v0t
y轴方向:
解得:
(2)设带电粒子经C点时的竖直分速度为 vy、速度为v
则有:
所以
方向与x轴正向成45° 斜向上
当粒子进入区域Ⅰ做匀速圆周运动,由牛顿第二定律,有
解得:
由几何关系知,离开区域I时的位置坐标:
x=L,y=0
(3)根据几何关系知,带电粒子从区域Ⅱ上边界离开磁场的半径,满足
因 解得