- 777.50 KB
- 2021-06-02 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
天津市实验中学2020届高三下学期4月
第三次测试试题)
一、单选题(本大题共 5 小题,共 25 分)
1.利用单分子油膜法可以粗测分子的大小和阿伏加德罗常数,如果已知体积为 V 的一滴油在水面上散开形成的单分子油膜的面积为 S,这种油的摩尔质量为 M,密度为,则阿伏加德罗常数约可表示为( )
A. B.
C. D.
【答案】A
【解析】
【详解】油的摩尔体积为
油分子直径
每个油分子的体积为
阿伏加德罗常数为
故A正确,BCD错误。
故选A。
2.关于原子核、原子核的衰变、核能,下列说法正确的是( )
A. 原子核的结合能越大,原子核越稳定
B. 任何两个原子核都可以发生核聚变
C. 衰变成 要经过8次β衰变和6次α衰变
D. 发生α衰变时,新核与原来的原子核相比,中子数减少了2
【答案】D
【解析】
【分析】
A.比结合能越大原子核越稳定,原子核的结合能越大,原子核不一定越稳定,故A错误;
B.只有较小原子核才会发生聚变,故B错误;
C.铀核衰变为铅核的过程中,衰变一次质量数减少个,次数;衰变的次数为,要经过次衰变和次衰变,故C错误;
D.粒子为氦核,由两个质子和两种中子组成,所以发生衰变时,新核与原来的原子核相比,中子数减少了,故D正确.
故选:D
【详解】
3.质量为m的人造地球卫星与地心的距离为r时,引力势能可表示为,其中G为引力常量,M为地球质量.该卫星原来在半径为R1的轨道上绕地球做匀速圆周运动,由于受到极稀薄空气的摩擦作用,飞行一段时间后其圆周运动的半径变为R2,此过程中因摩擦而产生的热量为
A. GMm B. GMm
C. D.
【答案】D
【解析】
试题分析:卫星做匀速圆周运动,由地球的万有引力提供向心力,则:
轨道半径为时①,卫星的引力势能为②
轨道半径为时③,卫星的引力势能为④
设摩擦而产生的热量为,根据能量守恒定律得:⑤
联立①~⑤得,故选项D正确.
考点:万有引力定律及其应用;重力势能的变化与重力做功的关系
【名师点睛】求出卫星在半径为圆形轨道和半径为的圆形轨道上的动能,从而得知动能的减小量,通过引力势能公式求出势能的增加量,根据能量守恒求出热量.
4.AB是固定在空中的光滑水平横杆,一质量为M的物块穿在杆AB上,物块通过细线悬吊着一质量为m的小球.现用沿杆的恒力F拉物块使物块、小球一起(保持相对静止)向右运动,细线与竖直方向夹角为θ,则以下说法正确的是( )
A. 杆对物块的支持力为Mg
B. 细线上的拉力为
C.
D. 物块和小球的加速度为
【答案】C
【解析】
【详解】对小球和物块组成的整体,分析受力如图1所示,
根据牛顿第二定律得:水平方向:,竖直方向:.故A错误;以小球为研究对象,分析受力情况如图2所示,由牛顿第二定律得:;,故B错误;对整体在水平方向:,故选项C正确,选项D错误.
【点睛】以小球和物块整体为研究对象,分析受力,根据牛顿第二定律研究横杆对M的摩擦力、弹力与加速度的关系.对小球研究,根据牛顿第二定律,采用合成法研究细线与竖直方向的夹角、细线的拉力与加速度的关系.
5.钳形电流表由电流互感器和电流表组合而成,常用来测量电流强度很大的电流,其原理如右下图.若初级线圈与二级线圈的匝数比为1︰500,电流表A的示数为1A,则
A. 钳形电流表的钳口是电流互感器的铁芯
B. 钳形电流表能够用来测量直流电的电流
C. 被测电路电流的平均值为500A
D. 被测电路电流的最大值为500A
【答案】A
【解析】
【分析】
变压器的工作原理是利用变化的磁场能够产生感应电流.
【详解】A.从图示来看,该互感器属于电流互感器,故钳形电流表的钳口是电流互感器的铁芯,A正确;
B.互感器利用是电磁感应的互感原理,不能用于直流电,故B错误;
C.D. 由得:,因为电流表测的是有效值,故故值为被测电流的有效值,故CD错误.
【点睛】本题考查变压器原理,熟记理想变压器的原理,电压电流的关系,题目就能顺利解出.
二、多选题(本大题共 3 小题,共 15 分)
6.I、II两种单色光组成的光束从水进入空气时,其折射光线如图所示,则( )
A. 这两束光光子动量pIpII、能量EIEII
B 用I、II两束光先后照射同一双缝干涉实验装置,干涉条纹间距xIxII
C. 用I、II两束光同时照射双缝干涉实验装置,在观察屏上也会出现干涉条纹
D. 用I、II两束光先后照射某金属,I光照射时恰能逸出光电子,II光照射时也能逸出光电子
【答案】ABC
【解析】
【详解】A.由图可知,这两束光的折射率nⅠnⅡ,则这两束光的光子频率ⅠⅡ,波长λIλII,由可知,光子动量pIpII;由能量E=h知,能量EI >E II,故A正确;
B.由双缝干涉条纹间距x=知,用I、II两束光先后照射同一双缝干涉实验装置,干涉条纹间距xIxII,故B正确;
C.用I、II两束光同时照射双缝干涉实验装置,则光束I和光束I自身发生干涉,光束II和光束II自身发生干涉,在观察屏上也会出现干涉条纹,故C正确;
D.用I、II两束光先后照射某金属,I光照射时恰能逸出光电子,II光的频率小于I光,II光照射时不能逸出光电子,故D错误.
7.如图所示,两位学生课外研究简谐绳波的特点,P1、P2 是处于绳波两端的两个波源,波源的振动频率均为f,振幅均为Y,某时刻P1 发出的波恰好传到c,P2 发出的波恰好传到a,图中只画出了此时刻两列波在ac 部分的叠加波形,P1a间、P2c 间波形没有画出,下列说法正确的是( )
A. a、b、c 三点是振动减弱点
B. a、c是振动减弱点,b是振动加强点,振幅为2Y
C. 再经过时间,b处质点距离平衡位置最远
D. 再经过时间,ac 间的波形是一条直线
【答案】AD
【解析】
【详解】AB.两列波的频率均为f,相遇后发生稳定的干涉,a、b、c三点始终处于平衡位置,是振动减弱点,故A正确,B错误;
C.再经过二分之一周期,即经过时间,b处质点仍处于平衡位置,故C错误;
D.再经过四分之一周期,即经过时间,两列绳波相互叠加,恰好抵消,ac间的波形是一条直线,故D正确.
8.一物体静止在水平地面上,在竖直向上拉力F作用下开始向上运动,如图甲.在物体向上运动过程中,其机械能E与位移x的关系图象如图乙,已知曲线上A点的切线斜率最大,不计空气阻力,则
A. 在x1处物体所受拉力最大
B. 在x1~x2过程中,物体的动能先增大后减小
C. 在x1~x2过程中,物体的加速度先增大后减小
D. 在0~x2过程中,拉力对物体做的功等于克服物体重力做的功
【答案】AB
【解析】
【详解】A.E-x图像的斜率代表竖直向上拉力F,物体静止在水平地面上,在竖直向上拉力F作用下开始向上,说明在x=0处,拉力F大于重力,在0-x1过程中,图像斜率逐渐增大,则拉力F在增大,x1处物体图象的斜率最大,所受的拉力最大,故A正确;
BC.在x1~x2过程中,图象的斜率逐渐变小,说明拉力越来越小;在x2处物体的机械能达到最大,图象的斜率为零,说明此时拉力为零.根据合外力可知,在x1~x2过程中,拉力F逐渐减小到mg的过程中,物体做加速度逐渐减小的加速运动,物体加速度在减小,动能在增大,拉力F=mg到减小到0的过程中,物体的加速度反向增大,物体做加速度逐渐增大的减速运动,物体的动能在减小;在x1~x2过程中,物体的动能先增大后减小,物体的加速度先减小后反向增大,故B正确,C错误;
D.物体从静止开始运动,到x2处以后机械能保持不变,在x2处时,物体具有重力势能和动能,故在0~x2过程中,拉力对物体做的功等于克服物体重力做的功与物体的动能之和,故D错误.
三、实验题(本大题共 2 小题,共 12 分)
9.为了测量两个质量不等沙袋的质量,由于没有可直接测量的工具(如天平、弹簧秤等),某实验小组应用下列器材测量:轻质定滑轮(质量和摩擦可忽略)、一套总质量为m=0.5kg砝码,细线、米尺、秒表,他们根据所学的物理知识改变实验条件进行多次测量,选择合适的变量得到线性关系,作出图线并根据图线的斜率和截距求出沙袋的质量(g取10m/s2).具体操作如下:
(1)实验装置如图所示,设左右两边沙袋的质量分别为m2、m1;
(2)从m中取出质量为△m的砝码放在右边沙袋中(剩余砝码都放在左边沙袋中,发现质量为m1的沙袋下降,质量为m2的沙袋上升(质量为m1的沙袋下降过程未与其他物体相碰);
(3)用米尺测出质量为m1的沙袋从静止开始下降的距离h,用秒表测出质量为m1的沙袋下降距离h所对应的时间t,则可求沙袋的加速度大小为a= ______ ;
(4)改变右边砝码的质量△m,测量相应的加速度a,得到多组△m及a的数据,作出“a~△m”图线;
(5)若求得图线的斜率k=4m/kg•s2,截距为b=2m/s2,沙袋的质量m1= ______ kg,m2= ______ kg.
【答案】(3). ; (4). 3; 1.5;
【解析】
沙袋下降距离h所对应的时间t,则,解得:
对右边沙袋:
对左边沙袋: 解得:
由“a~△m”图线的斜率k=4m/kg•s2,截距为b=2m/s2得: m=0.5kg 求解得m1=3kg,m2=1.5kg
10.某探究小组准备用图甲所示的电路测量某电源的电动势和内阻,实验器材如下:
待测电源(电动势约2V);
电阻箱R(最大阻值为99.99Ω);
定值电阻R0(阻值为2.0Ω);
定值电阻R1(阻值为4.5kΩ)
电流表G(量程为400μA,内阻Rg=500Ω)
开关S,导线若干.
(1)图甲中将定值电阻R1和电流表G串联,相当于把电流表G改装成了一个量程为_____V的电压表;
(2)闭合开关,多次调节电阻箱,并记下电阻箱的阻值R和电流表G的示数I;
(3)分别用E和r表示电源的电动势和内阻,则 和 的关系式为_________(用题中字母表示);
(4)以为纵坐标,为横坐标,探究小组作出的图像如图(乙)所示,根据该图像求得电源的内阻r=0.50Ω,则其电动势E=______V(保留两位有效小数);
(5)该实验测得的电动势与真实值相比,理论上______ .(填“>”“<”或“=”)
【答案】(1). 2; (3). ; (4). 2.08; (5). =;
【解析】
【详解】(1)根据串联电路电流相等,当电流表满偏时改装后的电压表达到最大量程即;
(2)根据闭合电路欧姆定律可得:,整理得:;
(3) 由对应的图象可知,,解得;
(4)通过(3)分析可知,本实验中不存大原理误差,即为真实的路端电压,
为流过电源的真实电流,故电动势的测量值与真实值相同.
【点晴】本题考查测量电动势和内电阻的实验,要注意明确实验原理,重点分析实验电路图,同时能正确利用闭合电路欧姆定律列式,注意本题中一定要考虑电表的内阻,同时在分析图象时要认真分析坐标轴的起点值.
四、计算题(本大题共 3 小题,共 48 分)
11.如图所示,传送带与水平面之间的夹角θ=30°,其上A、B两点间的距离L=5m,传送带在电动机的带动下以v=1m/s的速度匀速运动.现将一质量m=10kg的小物体(可视为质点)轻放在传送带的A点,已知小物体与传送之间的动摩擦因数μ=,在传送带将小物体从A点传送到B点的过程中,求:(取g=10m/s2)
(1)物体刚开始运动的加速度大小;
(2)物体从A到B运动的时间;
(3)传送带对小物体做的功;
(4)电动机做的功。
【答案】(1)2.5m/s2(2)5.2s(3)255J(4)270J
【解析】
详解】(1)对小物体进行受力分析有:
N=mgcosθ
mgsinθ=50N
f>mgsinθ,则小物体可以与传送带上静止。
根据牛顿第二定律:
f-mgsinθ=ma
75N-50N=10a
得:
a=2.5m/s2
(2)物块匀加速的时间:
匀加速的位移:
则小物体匀速运动的位移为:
s2=5m-0.2m=4.8m
匀速运动的时间:
则小物体从A到B所需时间为:
t=0.4s+4.8s=5.2s
(3)由功能关系知传送带对小物体做的功等于小物体机械能的增量:
(4)在前0.4s时间内传送带运动的位移为:
S2=vt=1×0.4=0.4m
所以摩擦产生的热量等于摩擦力乘以两物体间的相对距离,即:
Q=μmgcosθ(S2-S1)=75N×(0.4-0.2)J=15J
电动机做的功为:
W′=255J+15J=270J
12.如图所示,坐标平面第Ⅰ象限内存在水平向左的匀强电场,在距y轴左侧区域存在宽度为a=0.3m的垂直纸面向里的m匀强磁场,磁感应强度为B(大小可调节)。现有质荷比为kg/C的带正电粒子从x轴上的A点以一定初速度v0垂直x轴射入电场,且以v=,方向与y轴正向成60°的速度经过P点进入磁场,OA=0.1m,不计重力,求:
(1)粒子在A点进入电场的初速度v0为多少;
(2)要使粒子不从CD边界射出,则磁感应强度B的取值范围;
(3)粒子经过磁场后,刚好可以回到A点,则磁感应强度B为多少。
【答案】(1) ;(2);(3)
【解析】
【详解】(1)粒子在电场中做类平抛,竖直方向不受力,为匀速
(2) 粒子在磁场中做匀速圆周运动,当轨迹与边相切时恰好不出磁场线,此时有
解得
根据牛顿第二定律可得
解得
解得
即要使粒子不从边界射出,则磁感应强度的取值范围为
(3)粒子运动轨迹如图所示,出磁场时速度与轴正方向夹角为,做匀速直线运动后回到点,设出磁场处为点。
由几何关系可得
粒子在电场中做类平抛,则有
则有
解得
根据牛顿第二定律可得
解得
13.如图甲所示,光滑的平行金属导轨水平放置,导轨间距L=1 m,左侧接一阻值为R=0.5 Ω的电阻.在MN与PQ之间存在垂直轨道平面的有界匀强磁场,磁场宽度d=1 m.一质量m=1 kg的金属棒ab置于导轨上,与导轨垂直且接触良好,不计导轨和金属棒的电阻.金属棒ab受水平力F的作用从磁场的左边界MN由静止开始运动,其中,F与x(x为金属棒距MN的距离)的关系如图乙所示.通过电压传感器测得电阻R两端电压随时间均匀增大.则:
(1)金属棒刚开始运动时的加速度为多少?
(2)磁感应强度B的大小为多少?
(3)若某时刻撤去外力F后金属棒的速度v随位移s的变化规律满足v=v0﹣s(v0为撤去外力时的速度,s为撤去外力F后的位移),且棒运动到PQ处时恰好静止,则金属棒从MN运动到PQ的整个过程中通过左侧电阻R的电荷量为多少?外力F作用的时间为多少?
【答案】(1)a=0.4m/s2;(2)B=0.5T;(3)t=1s
【解析】
【详解】解:(1)金属棒开始运动时,,,金属棒不受安培力作用
金属棒所受合力为:
由牛顿第二定律得:
(2)由题意可知,电阻两端电压随时间均匀增大,即金属棒切割磁感线产生的感应电动势随时间均匀增大,由可知,金属棒的速度随时间均匀增大,则金属棒做初速度为零的匀加速运动.加速度:
由匀变速直线运动的位移公式可得:
由图乙所示图象可知,时,
由牛顿第二定律得:
解得:
(3)金属棒经过磁场的过程中,感应电动势的平均值:
感应电流的平均值:
通过电阻R的电荷量:
解得:
设外力的作用时间为,力作用时金属棒的位移为:
撤去外力后,金属棒的速度为:
到恰好静止,
则撤去外力后金属棒运动的距离为:
则
解得: