- 234.00 KB
- 2021-06-02 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第九章 电场
电容 带电粒子在电场中的运动
知识要点:
一、基础知识
1、电容
(1)两个彼此绝缘,而又互相靠近的导体,就组成了一个电容器。
(2)电容:表示电容器容纳电荷的本领。
a 定义式:,即电容C等于Q与U的比值,不能理解为电容C与Q成正比,与U成反比。一个电容器电容的大小是由电容器本身的因素决定的,与电容器是否带电及带电多少无关。
b 决定因素式:如平行板电容器(不要求应用此式计算)
(3)对于平行板电容器有关的Q、E、U、C的讨论时要注意两种情况:
a 保持两板与电源相连,则电容器两极板间的电压U不变
b 充电后断开电源,则带电量Q不变
(4)电容的定义式: (定义式)
(5)C由电容器本身决定。对平行板电容器来说C取决于:(决定式)
(6)电容器所带电量和两极板上电压的变化常见的有两种基本情况:
第一种情况:若电容器充电后再将电源断开,则表示电容器的电量Q为一定,此时电容器两极的电势差将随电容的变化而变化。
第二种情况:若电容器始终和电源接通,则表示电容器两极板的电压V为一定,此时电容器的电量将随电容的变化而变化。
2、带电粒子在电场中的运动
3
(1)带电粒子在电场中的运动,综合了静电场和力学的知识,分析方法和力学的分析方法基本相同:先分析受力情况,再分析运动状态和运动过程(平衡、加速或减速,是直线还是曲线),然后选用恰当的规律解题。
(2)在对带电粒子进行受力分析时,要注意两点:
a 要掌握电场力的特点。如电场力的大小和方向不仅跟场强的大小和方向有关,还与带电粒子的电量和电性有关;在匀强电场中,带电粒子所受电场力处处是恒力;在非匀强电场中,同一带电粒子在不同位置所受电场力的大小和方向都可能不同。
b 是否考虑重力要依据具体情况而定:基本粒子:如电子、质子、粒子、离子等除有要说明或明确的暗示以外,一般都不考虑重力(但并不忽略质量)。带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或明确的暗示以外,一般都不能忽略重力。
3、带电粒子的加速(含偏转过程中速度大小的变化)过程是其他形式的能和功能之间的转化过程。解决这类问题,可以用动能定理,也可以用能量守恒定律。
如选用动能定理,则要分清哪些力做功?做正功还是负功?是恒力功还是变力功?若电场力是变力,则电场力的功必须表达成,还要确定初态动能和末态动能(或初、末态间的动能增量)
如选用能量守恒定律,则要分清有哪些形式的能在变化?怎样变化(是增加还是减少)?能量守恒的表达形式有:
a 初态和末态的总能量(代数和)相等,即;
b 某种形式的能量减少一定等于其它形式能量的增加,即
c 各种形式的能量的增量的代数和;
4、带电粒子在匀强电场中类平抛的偏转问题。
如果带电粒子以初速度v0垂直于场强方向射入匀强电场,不计重力,电场力使带电粒子产生加速度,作类平抛运动,分析时,仍采用力学中分析平抛运动的方法:把运动分解为垂直于电场方向上的一个分运动——匀速直线运动:,;另一个是平行于场强方向上的分运动——匀加速运动,,,粒子的偏转角为。
经一定加速电压(U1)加速后的带电粒子,垂直于场强方向射入确定的平行板偏转电场中,粒子对入射方向的偏移,它只跟加在偏转电极上的电压U2有关。当偏转电压的大小极性发生变化时,粒子的偏移也随之变化。如果偏转电压的变化周期远远大于粒子穿越电场的时间(T ),则在粒子穿越电场的过程中,仍可当作匀强电场处理。
3
应注意的问题:
1、电场强度E和电势U仅仅由场本身决定,与是否在场中放入电荷 ,以及放入什么样的检验电荷无关。
而电场力F和电势能两个量,不仅与电场有关,还与放入场中的检验电荷有关。
所以E和U属于电场,而和属于场和场中的电荷。
2、一般情况下,带电粒子在电场中的运动轨迹和电场线并不重合,运动轨迹上的一点的切线方向表示速度方向,电场线上一点的切线方向反映正电荷的受力方向。物体的受力方向和运动方向是有区别的。
如图所示:
只有在电场线为直线的电场中,且电荷由静止开始或初速度方向和电场方向一致并只受电场力作用下运动,在这种特殊情况下粒子的运动轨迹才是沿电力线的。
3、点电荷的电场强度和电势
(1)点电荷在真空中形成的电场的电场强度,当源电荷时,场强方向背离源电荷,当源电荷为负时,场强方向指向源电荷。但不论源电荷正负,距源电荷越近场强越大。
(2)当取时,正的源电荷电场中各点电势均为正,距场源电荷越近,电势越高。负的源电荷电场中各点电势均为负,距场源电荷越近,电势越低。
(3)若有n个点电荷同时存在,它们的电场就互相迭加,形成合电场,这时某点的电场强度就等于各个点电荷在该点产生的场强的矢量和,而某点的电势就等于各个点电荷在该点的电势的代数和。
3