- 533.50 KB
- 2021-06-02 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
磁场对运动电荷的作用
一、选择题
图41-1
1.如图41-1所示,在x轴上方存在着垂直纸面向里、磁感应强度为B的匀强磁场,一个不计重力的带电粒子从坐标原点O处以速度v进入磁场,粒子进入磁场时的速度方向垂直于磁场且与x轴正方向成120°角,若粒子穿过y轴正半轴后在磁场中到x轴的最大距离为a,则该粒子的比荷和所带电荷的正负是( )
A.,正电荷 B.,正电荷
C.,负电荷 D.,负电荷
图41-2
解析:由左手定则可知,粒子带负电.作出O点和离开磁场处A的洛伦兹力的方向,交点即为圆心的位置,画出粒子的运动轨迹如图41-2所示(优弧ODA).末速度与x轴负方向的夹角为60°,由几何关系得∠CO′A=60°,故R+Rcos60°=a,而R=,联立解得=.
答案:C
图41-3
2.如图41-3所示,△ABC为与匀强磁场(方向垂直纸面向外)垂直的边长为a的等边三角形,比荷为的电子以速度v0从A点沿AB边入射,欲使电子经过BC边,磁感应强度B的取值为( )
A.B> B.B<
C.B> D.B<
图41-4
解析:由题意,如图41-4所示,电子正好经过C点,此时圆周运动的半径R==,要想电子从BC边经过,电子做圆周运动的半径要大于,由带电粒子在磁场中运动的公式r=有<,即B<,选D.
答案:D
图41-5
3.如图41-5所示,半径为R的圆是一圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B,方向垂直于纸面向外.一电荷量为q(q>0)、质量为m的粒子沿平行于直径ab的方向射入磁场区域,射入点与ab的距离为.已知粒子射出磁场与射入磁场时运动方向间的夹角为60°,则粒子的速率为(不计重力)( )
A. B. C. D.
解析:作出粒子运动轨迹如图41-6中实线所示.因P到ab距离为,可知α=30°.因粒子速度方向改变60°,可知转过的圆心角2θ=60°.由图中几何关系有tanθ=Rcosα,
解得r=R.再由Bqv=m可得v=,故B正确.
图41-6
答案:B
图41-7
4.如图41-7所示,竖直线MN∥PQ,MN与PQ间距离为a,其间存在垂直纸面向里的匀强磁场,磁感应强度为B,O是MN上一点,O处有一粒子源,某时刻放出大量速率均为v(方向均垂直磁场方向)、比荷一定的带负电粒子(粒子重力及粒子间的相互作用力不计),已知沿图中与MN成θ=60°角射出的粒子恰好垂直PQ射出磁场,则粒子在磁场中运动的最长时间为( )
A. B. C. D.
解析:当θ=60°时,粒子的运动轨迹如图41-8甲所示,则a=Rsin30°,即R=2a.设带电粒子在磁场中运动轨迹所对的圆心角为α,则其在磁场中运行的时间为t=T,即α越大,粒子在磁场中运行的时间越长,α最大时粒子的运行轨迹恰好与磁场的右边界相切,如图41-8乙所示,因R=2a,此时圆心角αm为120°,即最长运行时间为,而T==,所以粒子在磁场中运动的最长时间为,故C正确.
图41-8
答案:C
5.
图41-9
平面OM和平面ON之间的夹角为30°,其横截面(纸面)如图41-9所示,平面OM上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外.一带电粒子的质量为m,电荷量为q(q>0).粒子沿纸面以大小为v的速度从OM的某点向左上方射入磁场,速度与OM成30°角.已知该粒子在磁场中的运动轨迹与ON只有一个交点,并从OM上另一点射出磁场.不计重力.粒子离开磁场的出射点到两平面交线O的距离为( )
A. B. C. D.
解析:设粒子在磁场中运动的轨迹与ON边界交点为E,A、C分别为入射点和出射点,圆心为D,易知圆心角∠ADC=60°,由四边形OADE内角和的关系可知∠ADE=120°,所以ED和DC共线.在Rt△OEC中,OC==4R,结合R=,得OC=,D正确.
图41-10
答案:D
图41-11
6.(2019年安徽芜湖模拟)如图41-11所示,在x轴上方存在垂直于纸面向里的匀强磁场,磁感应强度为B.在xOy平面内,从原点O处沿与x轴正方向成θ角(0<θ<π)以速率v发射一个带正电的粒子(重力不计).则下列说法正确的是( )
A.若v一定,θ越大,则粒子在磁场中运动的时间越短
B.若v一定,θ越大,则粒子在离开磁场的位置距O点越远
C.若θ一定,v越大,则粒子在磁场中运动的角速度越大
D.若θ一定,v越大,则粒子在磁场中运动的时间越短
解析:由左手定则可知,带正电的粒子向左偏转.轨迹对应的圆心角α=2π-2θ,粒子在磁场中运动时间t=T=.若v一定,θ越大,则粒子在磁场中运动的时间越短,A项正确;若v一定,θ等于90°时,粒子在离开磁场的位置距O点最远,B项错误;若θ一定,粒子在磁场中运动的周期与v无关,粒子在磁场中运动的角速度与v无关,粒子在磁场中运动的时间与v无关,C、D两项错误.
答案:A
7.(多选)有两个匀强磁场区域Ⅰ和Ⅱ,Ⅰ中的磁感应强度是Ⅱ中的k倍.两个速率相同的电子分别在两磁场区域做圆周运动.与Ⅰ中运动的电子相比,Ⅱ中的电子( )
A.运动轨迹的半径是Ⅰ中的k倍
B.加速度的大小是Ⅰ中的k倍
C.做圆周运动的周期是Ⅰ中的k倍
D.做圆周运动的角速度与Ⅰ中的相等
解析:两速率相同的电子在两匀强磁场中做匀速圆周运动,且Ⅰ磁场磁感应强度B1是Ⅱ磁场磁感应强度B2的k倍.由qvB=得r=∝,即Ⅱ中电子运动轨迹的半
径是Ⅰ中的k倍,A正确;由F合=ma得a==∝B,所以=,B错误;由T=得T∝r,所以=k,C正确;由ω=得==,D错误.
答案:AC
图41-12
8.(多选)如图41-12所示,匀强磁场的方向竖直向下,磁场中有光滑的水平桌面,在桌面上平放着内壁光滑、底部有带电小球的试管,在水平拉力F的作用下,试管向右匀速运动,带电小球能从试管口处飞出,则( )
A.小球带负电
B.小球运动的轨迹是一条抛物线
C.洛伦兹力对小球做正功
D.维持试管匀速运动的拉力F应逐渐增大
解析:小球能从管口处飞出,说明小球受到指向管口的洛伦兹力,根据左手定则判断,小球带正电,故A错误.设试管运动速度为v1,小球垂直于试管向右的分运动是匀速直线运动,小球沿试管方向受到洛伦兹力的分力F1=qv1B,q、v1、B均不变,F1不变,则小球沿试管做匀加速直线运动,与平抛运动类似,小球运动的轨迹是一条抛物线,故B正确.洛伦兹力总是与速度垂直,不做功,故C错误.设小球沿试管的分速度大小为v2,则小球受到垂直试管向左的洛伦兹力的分力F2=qv2B,v2增大,则F2增大,而拉力F=F2,则F逐渐增大,故D正确.
答案:BD
图41-13
9.(多选)如图41-13所示,直角三角形ABC中存在一匀强磁场,比荷相同的两个粒子沿AB方向射入磁场,分别从AC边上的P、Q两点射出,则( )
A.从P射出的粒子速度大
B.从Q射出的粒子速度大
C.从P射出的粒子,在磁场中运动的时间长
D.两粒子在磁场中运动的时间一样长
图41-14
解析:作出各自的运动轨迹如图41-14所示,根据圆周运动特点知,分别从P、Q点射出时,与AC边夹角相同,故可判定从P、Q点射出时,半径RPR′+R′cos53°①
图41-20
R′=②
由①②并代入数据得:B′>5.33 T(取“≥”同样正确).
答案:(1)20 m/s (2)0.90 m (3)B′>5.33 T
14.如图41-21所示,A、C两点分别位于x轴和y轴上,∠OCA=30°,OA的长度为L.在△OCA区域内有垂直于xOy平面向里的匀强磁场.质量为m、电荷量为q的带正电粒子,以平行于y轴的方向从OA边射入磁场.已知粒子从某点射入时,恰好垂直于OC边射出磁场,且粒子在磁场中运动的时间为t0.不计重力.
图41-21
(1)求磁场的磁感应强度的大小;
(2)若粒子先后从两不同点以相同的速度射入磁场,恰好从OC边上的同一点射出磁场,求该粒子这两次在磁场中运动的时间之和;
(3)若粒子从某点射入磁场后,其运动轨迹与AC边相切,且在磁场内运动的时间为t0,求粒子此次入射速度的大小.
解析:(1)粒子在磁场中做匀速圆周运动,在时间t0内其速度方向改变了90°,故其周期T=4t0①
设磁感应强度大小为B,粒子速度为v,圆周运动的半径为r.由洛伦兹力提供向心力,得qvB=m②
匀速圆周运动的速度满足v=③
联立①②③式得B=④
(2)设粒子从OA边两个不同位置射入磁场,能从OC边上的同一点P射出磁场,粒子在磁场中运动的轨迹如图41-22(a)所示.设两轨迹所对应的圆心角分别为θ1和θ2.由几何关系有θ1+θ2=180°⑤
粒子两次在磁场中运动的时间之和t1+t2==2t0.⑥
图41-22
(3)如图41-22(b),由题给条件可知,该粒子在磁场区域中的轨迹圆弧对应的圆心角为150°.设O′为圆弧的圆心,圆弧的半径为r0,圆弧与AC相切于B点,从D点射出磁场,由几何关系和题给条件可知,此时有∠OO′D=∠BO′A=30°⑦
r0cos∠OO′D+=L⑧
设粒子此次入射速度的大小为v0,
由圆周运动规律v0=.⑨
联立①⑦⑧⑨式得v0=⑩.
答案:(1) (2)2t0 (3)