• 699.50 KB
  • 2021-06-02 发布

专题17 万有引力定律与航天(测)-2019年高考物理一轮复习讲练测

  • 15页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
第 17 讲 万有引力定律与航天——测 【满分:110 分 时间:90 分钟】 一、选择题(本大题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中. 1~8 题只有一项符合 题目要求; 9~12 题有多项符合题目要求。全部选对的得 5 分,选对但不全的得 3 分,有选错的得 0 分。) 1.“天琴计划”是中山大学发起的探测研究引力波的科研计划。据介绍,“天琴计划”实验本身将由三颗 全同卫星(SC1,SC2,SC3)组成一个等边三角形阵列,卫星本身作高精度无拖曳控制以抑制太阳风、太阳光 压等外部干扰,卫星之间以激光精确测量由引力波造成的距离变化。下图是天琴计划示意图。设同步卫星 的运行轨道半径为 R,三个全同卫星组成等边三角形的边长约为 4.4R。对于这三颗地球卫星的认识,正确 的是 A. 全同卫星平面一定与地球赤道平面重合 B. 全同卫星轨道半径大于月球轨道半径 C. 全同卫星周期约 4 天 D. 全同卫星周期约 9 天 【答案】 C 【解析】 2.地球的半径为 R,近地卫星的速度大小为 v,向心加速度为 a,运行的周期为 T,动能为 Ek.若该卫星在 离地面高度为 R 的圆轨道上运行,则有 A. 速度大小为 B. 周期大小为 C. 加速度大小为 D. 动能大小为 【答案】 D 【解析】 【分析】 运用万有引力提供向心力列出等式和运用圆周运动的物理量之间的关系列出等式解决问题。 【详解】 解得: ,该卫星离地面高度为 R 时,其轨道半径为 2R,所以加速度变为原来的四分之一,故 C 错误; D 项:由 A 分析可知,线速度变为原来的 倍,所以动能变为原来的一半,故 D 正确。 【点睛】 用已知物理量来表达未知的物理量时应该选择两者有更多的共同物理量的表达式。 3.已知,某卫星在赤道上空轨道半径为 r1 的圆轨道上绕地运行的周期为 T,卫星运动方向与地球自转方向 相同,赤道上某城市的人每三天恰好五次看到卫星掠过其正上方,假设某时刻,该卫星如图在 A 点变轨进 入椭圆轨道,近地点 B 到地心距离为 r2,设卫星由 A 到 B 运动得时间为 t,地球自转周期为 T0,不计空气阻 力,则 A. B. C. 卫星在图中椭圆轨道由 A 到 B 时,机械能增大 D. 卫星由圆轨道进入椭圆轨道过程中,机械能不变 【答案】 A 【解析】 【分析】 C 项:卫星在图中椭圆轨道由 A 到 B 时,只有万有引力做功,机械能守恒,故 C 错误; D 项:卫星由圆轨道进入椭圆轨道,需要减速,则机械能减小,故 D 错误。 【点睛】 解决本题的关键知道机械能守恒的条件,以及变轨的原理,知道当万有引力大于向心力时,做近心运动, 当万有引力小于向心力时,做离心运动.掌握开普勒第三定律,并能灵活运用。 4.宇航员乘坐航天飞船,在距月球表面高度为 H 的圆轨道绕月运行。经过多次变轨最后登上月球。宇航员 在月球表面做了一个实验:将一片羽毛和一个铅球从高度为 h 处同时以速度 v0 做平抛运动,二者同时落到 月球表面,测量其水平位移为 x。已知引力常量为 G,月球半径为 R,则下列说法不正确的是( ) A. 月球的质量 B. 在月球上发射卫星的第一宇宙速度大小 C. 月球的密度 D. 有一个卫星绕月球表面运行周期 【答案】 C 【解析】 【分析】 物体做平抛运动,根据分运动公式列式求解重力加速度,在月球表面,不计月球自传时,重力等于万有引 力,列式求解即可; 解得月球质量: ,故选项 A 正确; B、在月球表面运动的卫星的第一宇宙速度为 ,由万有引力定律提供向心力得到: ,解得: ,故选项 B 正确; C、根据密度公式可以得到: ,故选项 C 错误; D、根据公式可以得到卫星绕月球表面运行的周期: ,故选项 D 正确。 【点睛】 本题首先要通过平抛运动的知识求解月球表面的重力加速度,然后结合月球表面的重力等于万有引力、万 有引力提供卫星圆周运动的向心力列式分析即可。 5.2017 年 4 月 22 日,我国第一艘货运飞船“天舟一号”与“天宫二号”空间实验室顺利完成自动交会对 接,若“天舟一号”与“天宫二号”绕地球做半径为 r、逆时针方向的匀速圆周运动,它们与地心连线的夹 角为 θ,如图所示,已知地球半径为 R,地球表面的重力加速度为 g,不计算“天舟一号”与“天宫二号” 间的相互作用力,下列说法正确的是 A. “天舟一号”与“天宫二号”的向心加速度大均为 B. “天舟一号”从图示位置运动到天宫二号所在位置所需时间为 C. “天舟一号”要想追上“天宫二号”,必须先向后喷气 D. “天舟一号”追上“天宫二号”,该过程中万有引力对“天舟一号”先做正功后做负功 【答案】 D 【解析】 【分析】 向后喷气,速度变大会做离心运动脱离原轨道则不可能追上“天宫二号”,则 C 错误;使“天舟一号”追上“天 宫二号”要先降低轨道再加速运动变大轨道,则万有引力对“天舟一号”先做正功后做负功,则 D 正确; 故选 D。 6.已知月球半径为 R,飞船在距月球表面高度为 R 的圆轨道上飞行,周期为 T,万有引力常量为 G,下列说 法正确的是 ( ) A. 月球质量为 B. 月球表面重力加速度为 C. 月球密度为 D. 月球第一宇宙速度为 【答案】 A 【解析】 【分析】 BC 错误;月球第一宇宙速度为 ,D 错误. 【点睛】 本题是卫星类型的问题,常常建立这样的模型:环绕天体绕中心天体做匀速圆周运动,由中心天体的万有 引力提供向心力.重力加速度 g 是联系星球表面宏观物体运动和天体运动的桥梁. 7.如图所示,A 为地球赤道表面的物体,B 为环绕地球运行的卫星,此卫星在距离地球表面 的高度处做 匀速圆周运动,且向心加速度的大小为 a,,地球的半径为 R,引力常量为 G。则下列说法正确的是( ) A. 物体 A 的向心加速度大于 a B. 物体 A 的线速度比卫星 B 的线速度大 C. 地球的质量为 D. 地球两极的重力加速度大小为 a 【答案】 D 【解析】根据 可知 可知 B 的加速度 a 大于地球同步卫星的加速度;而根据 a=ω2r 可知, 同步卫星的加速度大于物体 A 的加速度,则物体 A 的向心加速度小于 a,选项 A 错误;根据 可知 可知 B 的速度大于地球同步卫星的速度;而根据 v=ωr 可知,同步卫星的速度大于物体 A 的速度, 则物体 A 的速度小于卫星 B 的速度,选项 B 错误;对卫星 B,根据 可得,地球的质量为 ,选项 C 错误;根据 可得地球两极的重力加速度大小为 ,选项 D 正确;故选 D. 点睛:要比较赤道上的物体与某卫星的加速度或速度关系,可借助于同步卫星做中间量,因同步卫星与赤 道上物体的角速度相同,同时同步卫星又是“卫星”模型. 8.我国首颗量子科学实验卫星“墨子”已于酒泉成功发射,将在世界上首次实现卫星和地面之间的量子通 信。“墨子”将由火箭发射至高度为 500 千米的预定圆形轨道。此前 6 月在西昌卫星发射中心成功发射了 第二十三颗北斗导航卫星 G7。G7 属地球静止轨道卫星(高度约为 36000 千米),它将使北斗系统的可靠性 进一步提高。关于卫星以下说法中正确的是 A. 这两颗卫星的运行速度可能大于 7.9 km/s B. 通过地面控制可以将北斗 G7 定点于西昌正上方 C. 量子科学实验卫星“墨子”的周期比北斗 G7 小 D. 量子科学实验卫星 “墨子”的向心加速度比北斗 G7 小 【答案】 C 【解析】 【点睛】解决本题的关键掌握万有引力提供向心力 ,会根据轨道半径的关系比较 向心加速度、线速度和周期。 9.如图所示,A 为静止于地球赤道上的物体,B 为绕地球沿椭圆轨道运行的卫星,C 为绕地球做圆周运动的 卫星,P 为 B、C 两卫星轨道的交点。已知 A、B、C 绕地心运动的周期相同,下列说法中正确的是 A. 物体 A 的速度小于第一宇宙速度 B. 物体 A 的速度小于卫星 C 的运行速度 C. 物体 A 和卫星 C 具有相同大小的加速度 D. 卫星 B 在 P 点的加速度与卫星 C 在 P 点的加速度大小不相等 【答案】 AB 【解析】 【详解】 D、卫星做圆周或椭圆都是受万有引力产生加速度, ,可得 ,则两卫星距离地心的距离相 等时加速度相等,D 错误。 故选 AB。 【点睛】 解决本题的关键知道 A 和 C 的角速度相等,通过 v=rω 比较线速度大小,注意物体 A 随地球做圆周运动不 是靠万有引力提供向心力. 10.宇宙中,两颗靠得比较近的恒星,只受到彼此之间的万有引力作用互相绕转,称之为双星系统,设某 双星系统绕其连线上的 O 点做匀速圆周运动,如图所示。若 AO<OB,则( ) A. 星球 A 的向心力一定大于 B 的向心力 B. 星球 A 的线速度一定大于 B 的线速度 C. 星球 A 的质量一定大于 B 的质量 D. 双星的总质量一定,双星之间的距离越大,其转动周期越大 【答案】 CD 【解析】 【详解】 联立①②得 mA+mB= = ,可知双星的总质量一定,双星之间的距离越大,其转动周期越大, 故 D 正确; 故选:CD 11.我国的嫦娥工程规划为三期,简称为“绕、落、回”第一步为“绕”,即发射我国第一颗月球探测卫星, 突破至地外天体的飞行技术,实现月球探测卫星绕月飞行,在月球探测卫星奔月飞行过程中探测地月空间 环境。 第二步为“落”,即发射月球软着陆器,突破地外天体的着陆技术。 第三步为“回”,即发射月 球软着陆器,突破自地外天体返回地球的技术。 当“绕、落、回”三步走完后,我国的无人探月技术将 趋于成熟,中国人登月的日子也将不再遥远。关于无人探月飞船“绕、落、回” 的整个过程中如下说法 正确的是(  ) A. 在地球上起飞的初始阶段,无人探月飞船处于超重状态 B. 进入月球轨道稳定运行后,无人探月飞船不受任何力的作用 C. 在月球上软着陆之前,无人探月飞船处于超重状态 D. 返回地球落地之前,无人探月飞船处于失重状态 【答案】 AC 【解析】 【详解】 A、在地球上刚起飞的阶段,是加速向上运动的,有向上的加速度,应该是超重,故 A 正确;B、在月球轨 道稳定运行后,飞船受月球万有引力做匀速圆周运动,处于完全失重状态,故 B 错;C、D、在月球表面软 着陆之前与返回地球落地之前是相似的情景,飞船处于向下减速运动,也具有向上的加速度,应该是超重 状态,故 C 对,D 错。故选 AC。 【点睛】 解决本题的关键会根据加速度的方向确定超失重,加速度方向向上,处于超重状态,加速度方向向下,处 于失重状态.不能误认为飞船发射时超重,返回星球表面时失重. 12.2013 年 12 月 2 日,嫦娥三号探测器顺利发射.嫦娥三号要求一次性进入近地点 210 公里、远地点约 36.8 万公里的地月转移轨道.12 月 10 日晚上九点二十分,在太空飞行了九天的“嫦娥三号”飞船,再次 成功变轨,从距离月表 100km 的环月圆轨道Ⅰ,变为近月点 15km、远月点 100km 的椭圆轨道Ⅱ,两轨道相 切于点 P,如图所示.若绕月运行时只考虑月球引力作用,关于“嫦娥三号”飞船,以下说法正确的是 A. 在轨道Ⅰ上运动的速度小于在轨道Ⅱ上近月点的速度 B. 沿轨道 I 运行至 P 点的速度等于沿轨道 II 运行至 P 点的速度 C. 沿轨道 I 运行至 P 点的加速度小于沿轨道 II 运行至 P 点的加速度 D. 在轨道Ⅰ上的机械能比在轨道Ⅱ上的机械能大 【答案】 AD 【解析】 【分析】 所以两次经过 P 点时的加速度相等,C 错误;变轨的时候点火,发动机做功,从轨道Ⅰ进入轨道Ⅱ,发动机 要做功使卫星减速,故在轨道Ⅰ上的势能与动能之和比在轨道Ⅱ上的势能与动能之和大,即在轨道Ⅰ上的 机械能比在轨道Ⅱ上的机械能大,D 正确. 【点睛】 掌握万有引力提供圆周运动向心力知道,知道卫星变轨原理即使卫星做近心运动或离心运动来实现轨道高 度的改变.掌握规律是解决问题的关键. 二、非选择题(本大题共 4 小题,第 13、14 题每题 10 分;第 15、16 题每题 15 分;共 50 分) 13.一宇航员抵达一半径为 R 的星球表面后,为了测定该星球的质量,做了如下的实验:取一根细线穿过 光滑的细直管,细线一端拴一质量为 m 的砝码,另一端连接在一固定的测力计上,手握细直管抡动砝码, 使砝码在同一竖直平面内作完整的圆周运动,停止抡动并稳定细直管后,砝码仍可继续在一竖直面内作完 整的圆周运动,如图所示。此时观察测力计得到当砝码运动到圆周的最低点和最高点两位置时测力计的读 数差为 ,已知引力常量为 G。试根据题中所给条件和测量结果,求:(忽略弹簧的伸长变化) ⑴该星球表面的重力加速度 g; ⑵该星球的质量 M. 【答案】 (1) (2) 【解析】 【详解】 所以: 【点睛】 知道绳子拉力与重力的合力提供向心力,应用向心力公式列方程,熟练应用动能定理,知道在星球表面物 体受到啊重力等于万有引力, 14.一颗在赤道平面内飞行的人造地球卫星,其轨道半径为 r=2R (R 为地球半径)。已知地球表面的重力加 速度为 g,则该卫星的运行周期是多大?若卫星的运动方向与地球自转方向相同,已知地球自转的角速度为 ω0,某一时刻该卫星通过赤道上某建筑物的正上方,问至少经过多长时间,它会又一次出现在该建筑物正 上方? 【答案】 T=4π ; 【解析】 【分析】 (1)人造地球卫星绕地球做匀速圆周运动,由地球的万有引力提供向心力,根据牛顿运动定律求解卫星的 (2)以地面为参照物,卫星再次出现在建筑物上方时,建筑物随地球转过的弧度比卫星转过弧度少2π.即 ω1△t-ω0△t=2π, 解得:△t= ; 【点睛】 本题考查万有引力定律和圆周运动知识的综合应用能力.第(2)问时圆周运动的追击问题,要搞清建筑物 与卫星的角速度大小关系,可将卫星与同步卫星相比较得到. 15.宇航员成功登上半径为 R 的某星球后,为初测星球质量,在该星球表面上固定一倾角为 θ=30o 的斜面。 使小物块以速度 v0 从斜面底端沿斜面向上运动,得到其往返运动 v-t 图线如图。若图中 t0 已知,且引力常 量为 G。求: (1)物块回到斜面底端时的速度大小; (2)该星球的质量。 【答案】 (1) (2) 【解析】 【分析】 (1)物块上滑和下滑的位移大小相等,v-t 图象与时间轴包围的面积表示位移大小,据此列式求解物块回 到 物块向下滑动时,根据牛顿第二定律,有:mgsin30°-μmgcos30°=ma2 其中:a2= 联立解得:g= 在星球表面,重力等于万有引力,故:G =mg 联立解得:M= 【点睛】 本题是万有引力定律与动力学的综合,重力加速度是联系这两个问题的桥梁,则通过图线得出加速度大小, 结合牛顿第二定律求出重力加速度的大小是解决本题的关键. 16.宇航员在地球表面以某一初速度竖直上抛一小球,经过时间小球落回原处;若他在某一星球表面以相同 的初速度竖直上抛同一小球,需经过 5 小球落回原处。(取地球表面重力加速度 ,空气阻力不计) (1).求该星球表面附近的重力加速度 ; (2).已知该星球的半径与地球的半径 之比为 1:4,求星球的质量 M 星与地球质量 M 地之比。 【答案】 (1) ;(2)1:80. 【解析】 (1)地球表面 ①,星球表面 ②,