• 339.50 KB
  • 2021-06-09 发布

高中数学必修1教案:第九章直线平面简单几何体(B)(第11课)直线与平面垂直(4)

  • 4页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
课 题:9.4直线和平面垂直 (四) ‎ 教学目的:‎ ‎1.掌握三垂线定理及其逆定理的证明 ‎2.正确地运用三垂线定理或逆定理证明两直线垂直 教学重点:三垂线定理及其逆定理的证明 教学难点: 用三垂线定理及其逆定理证明两条异面直线的垂直 授课类型:新授课 ‎ 课时安排:1课时 ‎ 教 具:多媒体、实物投影仪 ‎ 教学过程:‎ 一、复习引入: ‎ ‎1直线和平面的位置关系 ‎(1)直线在平面内(无数个公共点);‎ ‎(2)直线和平面相交(有且只有一个公共点);‎ ‎(3)直线和平面平行(没有公共点)‎ ‎2线面平行的判定 定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行 推理模式:‎ ‎3线面平行的性质 定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行 推理模式:‎ ‎4 线面垂直定义:如果一条直线和一个平面相交,并且和这个平面内的任意一条直线都垂直,我们就说这条直线和这个平面互相垂直其中直线叫做平面的垂线,平面叫做直线的垂面交点叫做垂足 直线与平面垂直简称线面垂直,记作:a⊥α ‎5直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面 ‎6 直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那麽这两条直线平行 ‎7 三垂线定理 在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直 说明:(1)定理的实质是判定平面内的一条直线和平面的一条斜线的垂直关系;‎ ‎(2)推理模式: ‎ ‎8.三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那麽它也和这条斜线的射影垂直 推理模式: .‎ 注意:⑴三垂线指PA,PO,AO都垂直α内的直线a 其实质是:斜线和平面内一条直线垂直的判定和性质定理 ⑵要考虑a的位置,并注意两定理交替使用 三、讲解范例:‎ 例1 如图,道路两旁有一条河,河对岸有电塔,高,只有量角器和皮尺作测量工具,能否测出电塔顶与道路的距离?‎ 解:在道路边取点,使与道路边所成的水平角等于,‎ 再在道路边取一点,使水平角,‎ 测得的距离等于,‎ ‎∵是在平面上的射影,且 ‎∴(三垂线定理)‎ 因此斜线段的长度就是塔顶与道路的距离,‎ ‎∵,‎ ‎∴,‎ 在中得,‎ 答:电塔顶与道路距离是.‎ 例2.点为所在平面外的一点,点为点在平面内的射影,若,求证:.‎ 证明:连结,‎ ‎∵,且 ‎∴(三垂线定理逆定理)‎ 同理,‎ ‎∴为的垂心,∴,‎ 又∵,‎ ‎∴(三垂线定理)‎ 例3.已知:四面体中,是锐角三角形,是点在面上的射影,求证:不可能是的垂心.‎ 证明:假设是的垂心,连结,则,‎ ‎∵‎ ‎∴是在平面内的射影,‎ ‎∴(三垂线定理)‎ 又∵,是在平面内的射影 ‎∴ (三垂线定理的逆定理)‎ ‎∴是直角三角形,此与“是锐角三角形”矛盾 ‎∴假设不成立,‎ 所以,不可能是的垂心 例4.已知:如图,在正方体中,是的中点,‎ 是的交点,求证:.‎ 证明:,是在面上的射影 又∵,∴‎ 取中点,连结,‎ ‎∵,‎ ‎∴为在面上的射影,‎ 又∵正方形中,分别为的中点,‎ ‎∴,‎ ‎∴(三垂线定理)又∵,‎ ‎∴.‎ 四、课堂练习:‎ ‎1.如图,PA⊥△ABC所在平面,AB=AC=13,BC=10,PA=5,求点P到直线BC的距离.‎ 参考答案:‎ 设BC的中点为D,连结PD.‎ ‎∵AB=AC=13,BC=10,∴AD⊥BC.‎ 且AD=12.‎ 又∵PA⊥平面ABC,∴PD⊥BC.‎ 即 PD的长度就是P到直线BC的距离.‎ 而 PD=13.‎ ‎2.如图,是平面α的斜线,斜足是O,A是上任意一点,AB是平面α的垂线,B是垂足,设OD是平面α内与OB不同的一条直线,AC垂直于OD于C,若直线与平面α所成的角θ=45°,∠BOC=45°,求∠AOC的大小.‎ 参考答案:连结BC.‎ 中,有∠AOC=60°.‎ 五、小结 :我们学习了三垂线定理及其逆定理,定理的证明方法是证明空间两条直线互相垂直的基本方法,我们称之为线面垂直法;还通过练习的训练加深了定理的理解,同时得到立体几何问题解决的一般思路.‎ 六、课后作业: ‎ 七、板书设计(略)‎ 八、课后记:‎

相关文档