• 211.00 KB
  • 2021-06-09 发布

2016届高考数学(理)大一轮复习达标训练试题:课时跟踪检测(四十五) 直线、平面平行的判定与性质

  • 7页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
课时跟踪检测(四十五) 直线、平面平行的判定与性质 一、选择题 ‎1.(2015·江西盟校联考)设l表示直线,α,β表示平面.给出四个结论:‎ ‎①如果l∥α,则α内有无数条直线与l平行;‎ ‎②如果l∥α,则α内任意的直线与l平行;‎ ‎③如果α∥β,则α内任意的直线与β平行;‎ ‎④如果α∥β,对于α内的一条确定的直线a,在β内仅有唯一的直线与a平行.‎ 以上四个结论中,正确结论的个数为(  )‎ A.0            B.1‎ C.2 D.3‎ ‎2.(2015·福建联考)设l,m,n表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题:‎ ‎①若m∥l,且m⊥α,则l⊥α;‎ ‎②若m∥l,且m∥α,则l∥α;‎ ‎③若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n;‎ ‎④若α∩β=m,β∩γ=l,γ∩α=n,且n∥β,则l∥m.‎ 其中正确命题的个数是(  )‎ A.1 B.2‎ C.3 D.4‎ ‎3.(2015·揭阳一模)设平面α,β,直线a,b,a⊂α,b⊂α,则“a∥β,b∥β”是“α∥β”的(  )‎ A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 ‎4.(2015·温州模拟)已知m,n是两条不同的直线,α,β,γ是三个不同的平面,下列命题中错误的是(  )‎ A.若m⊥α,m⊥β,则α∥β B.若α∥γ,β∥γ,则α∥β C.若m⊂α,n⊂β,m∥n,则α∥β D.若m,n是异面直线,m⊂α,m∥β,n⊂β,n∥α,则α∥β ‎5.设α,β,γ为三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,n⊂γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.‎ ‎①α∥γ,n⊂β;②m∥γ,n∥β;③n∥β,m⊂γ.‎ 可以填入的条件有(  )‎ A.①② B.②③‎ C.①③ D.①②③‎ ‎6.如图,四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,G为MC的中点.则下列结论中不正确的是(  )‎ A.MC⊥AN B.GB∥平面AMN C.平面CMN⊥平面AMN D.平面DCM∥平面ABN 二、填空题 ‎7.如图,四棱锥PABCD的底面是一直角梯形,AB∥CD,BA⊥AD,CD=2AB,PA⊥底面ABCD,E为PC的中点,则BE与平面PAD的位置关系为________.‎ ‎8.在正四棱柱ABCD A1B‎1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,则点Q满足条件________时,有平面D1BQ∥平面PAO.‎ ‎9.(2015·云南第一次检测)在三棱锥SABC中,△ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于D,E,F,H.D,E分别是AB,BC的中点,如果直线SB∥平面DEFH,那么四边形DEFH的面积为________.‎ ‎10.(2015·温州一测)如图,矩形ABCD中,E为边AB的中点,将△ADE沿直线DE翻转成△A1DE.若M为线段A‎1C的中点,则在△ADE翻转过程中,正确的命题是________.‎ ‎①|BM|是定值;‎ ‎②点M在圆上运动;‎ ‎③一定存在某个位置,使DE⊥A‎1C;‎ ‎④一定存在某个位置,使MB∥平面A1DE.‎ 三、解答题 ‎11.如图,ABCD与ADEF均为平行四边形,M,N,G分别是AB,AD,EF的中点.‎ ‎(1)求证:BE∥平面DMF;‎ ‎(2)求证:平面BDE∥平面MNG.‎ ‎12.(2014·安徽高考)如图,四棱锥PABCD的底面是边长为8的正方形,四条侧棱长均为2.点G,E,F,H 分别是棱 PB,AB,CD,PC上共面的四点,平面GEFH⊥ 平面ABCD ,BC∥ 平面GEFH.‎ ‎(1)证明:GH∥EF;‎ ‎(2)若EB=2,求四边形GEFH 的面积. ‎ 答案 ‎1.选C ②中α内的直线与l可异面,④中可有无数条.‎ ‎2.选B 对①,两条平行线中有一条与一平面垂直,则另一条也与这个平面垂直,故①正确;对②,直线l可能在平面α内,故②错误;对③,三条交线除了平行,还可能相交于同一点,故③错误;对④, 结合线面平行的判定定理和性质定理可判断其正确.综上①④正确.故选B.‎ ‎3.选B 由平面与平面平行的判定定理可知,若直线a,b是平面α内两条相交直线,且有“a∥β,b∥β”,则有“α∥β”;当“α∥β”,若a⊂α,b⊂α,则有“a∥β,b∥β”,因此“a∥β,b∥β”是“α∥β”的必要不充分条件.选B.‎ ‎4.选C 由线面垂直的性质可知A正确;由两个平面平行的性质可知B正确;由异面直线的性质易知D也是正确的;对于选项C,α,β可以相交、可以平行,故C错误,选C.‎ ‎5.选C 由面面平行的性质定理可知,①正确;当n∥β,m⊂γ时,n和m在同一平面内,且没有公共点,所以平行,③正确.选C.‎ ‎6.选C 显然该几何图形为正方体截去两个三棱锥所剩的几何体,把该几何体放置到正方体中(如图),取AN的中点H,连接HB,MH,GB,则MC∥HB,又HB⊥AN,所以MC⊥AN,所以A正确;由题意易得GB∥MH,又GB⊄平面AMN,MH⊂平面AMN,所以GB∥平面AMN,所以B正确;因为AB∥CD,DM∥BN,且AB∩BN=B,CD∩DM=D,所以平面DCM∥平面ABN,所以D正确.故选C.‎ ‎7.解析:取PD的中点F,连接EF,AF,‎ 在△PCD中,EF綊CD.‎ 又∵AB∥CD且CD=2AB,‎ ‎∴EF綊AB,∴四边形ABEF是平行四边形,∴EB∥AF.‎ 又∵EB⊄平面PAD,AF⊂平面PAD,‎ ‎∴BE∥平面PAD.‎ 答案:平行 ‎8.解析: 如图,假设Q为CC1的中点,因为P为DD1的中点,所以QB∥PA.连接DB,因为P,O分别是DD1,DB的中点,所以D1B∥PO,又D1B⊄平面PAO,QB⊄平面PAO,所以D1B∥平面PAO,QB∥平面PAO,又D1B∩QB=B,所以平面D1BQ∥平面PAO.故Q满足条件Q为CC1的中点时,有平面D1BQ∥平面PAO.‎ 答案:Q为CC1的中点 ‎9.解析:取AC的中点G,连接SG,BG.易知SG⊥AC,BG⊥AC,故AC⊥平面SGB,所以AC⊥SB.因为SB∥平面DEFH,SB⊂平面SAB,平面SAB∩平面DEFH=HD,则SB∥HD.同理SB∥FE.又D,E分别为AB,BC的中点,则H,F也为AS,SC的中点,从而得HF綊AC綊DE,所以四边形DEFH为平行四边形.又AC⊥SB,SB∥HD,DE∥AC,所以DE⊥HD,所以四边形DEFH为矩形,其面积S=HF·HD=·=.‎ 答案: ‎10.解析:取DC中点N,连接MN,NB,则MN∥A1D,NB∥DE,‎ ‎∴平面MNB∥平面A1DE,‎ ‎∵MB⊂平面MNB,‎ ‎∴MB∥平面A1DE,④正确;‎ ‎∠A1DE=∠MNB,MN=A1D=定值,NB=DE=定值,根据余弦定理得,MB2=MN2+NB2-2MN·NB·cos ∠MNB,所以MB是定值.①正确;‎ B是定点,所以M是在以B为圆心,MB为半径的圆上,②正确;‎ 当矩形ABCD满足AC⊥DE时存在,其他情况不存在,③不正确.‎ 所以①②④正确.‎ 答案:①②④‎ ‎11.证明:(1)连接AE,则AE必过DF与GN的交点O,‎ 连接MO,则MO为△ABE的中位线,所以BE∥MO,‎ 又BE⊄平面DMF,MO⊂平面DMF,‎ 所以BE∥平面DMF.‎ ‎(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN,‎ 又DE⊄平面MNG,GN⊂平面MNG,‎ 所以DE∥平面MNG.‎ 又M为AB的中点,‎ 所以MN为△ABD的中位线,所以BD∥MN,‎ 又MN⊂平面MNG,BD⊄平面MNG,‎ 所以BD∥平面MNG,‎ 又DE,BD⊂平面BDE,DE∩BD=D,‎ 所以平面BDE∥平面MNG.‎ ‎12.解:(1)证明:因为BC∥平面GEFH,BC⊂平面PBC,且平面PBC∩平面GEFH=GH,所以GH∥BC.‎ 同理可证EF∥BC,‎ 因此GH∥EF.‎ ‎(2)连接AC,BD交于点O,BD交EF于点K,连接OP,GK.‎ 因为PA=PC,O是AC的中点,所以PO⊥AC,同理可得PO⊥BD.‎ 又BD∩AC=O,且AC,BD都在底面ABCD内,所以PO⊥底面ABCD.‎ 又因为平面GEFH⊥平面ABCD,‎ 且PO⊄平面GEFH,所以PO∥平面GEFH.‎ 因为平面PBD∩平面GEFH=GK,‎ 所以PO∥GK,且GK⊥底面ABCD,‎ 从而GK⊥EF.‎ 所以GK是梯形GEFH的高.‎ 由AB=8,EB=2得EB∶AB=KB∶DB=1∶4,‎ 从而KB=DB=OB,即K为OB的中点.‎ 再由PO∥GK得GK=PO,‎ 即G是PB的中点,且GH=BC=4.‎ 由已知可得OB=4,‎ PO===6,‎ 所以GK=3.‎ 故四边形GEFH的面积 S=·GK=×3=18.‎

相关文档