- 83.50 KB
- 2021-06-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
专题06+函数的奇偶性与周期性
1.设f(x)为定义在R上的奇函数.当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)等于( ).
A.3 B.1 C.-1 D.-3
【解析】 由f(-0)=-f(0),即f(0)=0.则b=-1,
f(x)=2x+2x-1,f(-1)=-f(1)=-3.
【答案】 D
2.已知定义在R上的奇函数,f(x)满足f(x+2)=-f(x),则f(6)的值为 ( ).
A.-1 B.0 C.1 D.2
【答案】 B
3.定义在R上的函数f(x)满足f(x)=f(x+2),当x∈[3,5]时,f(x)=2-|x-4|,则下列不等式一定成立的是 ( ).
A.f>f B.f(sin 1)f(sin 2)
【解析】 当x∈[-1,1]时,x+4∈[3,5],由f(x)=f(x+2)=f(x+4)=2-|x+4-4|=2-|x|,
显然当x∈[-1,0]时,f(x)为增函数;当x∈[0,1]时,f(x)为减函数,cos=-,sin =>,又f=f>f,所以f>f.
【答案】 A
4.已知函数f(x)=则该函数是 ( ).
A.偶函数,且单调递增 B.偶函数,且单调递减
C.奇函数,且单调递增 D.奇函数,且单调递减
【解析】 当x>0时,f(-x)=2-x-1=-f(x);当x<0时,f(-x)=1-2-(-x)=1-2x=-f(x).当x=0时,f(0)=0,故f(x)为奇函数,且f(x)=1-2-x在[0,+∞)上为增函数,f(x)=2x-1在(-∞,0)上为增函数,又x≥0时1-2-x≥0,x<0时2x-1<0,故f(x)为R上的增函数.
【答案】 C
5.已知f(x)是定义在R上的周期为2的周期函数,当x∈[0,1)时,f(x)=4x-1,则f(-5.5)的值为( )
A.2 B.-1 C.- D.1
【解析】f(-5.5)=f(-5.5+6)=f(0.5)=40.5-1=1.
【答案】 D
6.设函数D(x)=则下列结论错误的是 ( ).
A.D(x)的值域为{0,1} B.D(x)是偶函数
C.D(x)不是周期函数 D.D(x)不是单调函数
【答案】 C
7.若函数f(x)=x2-|x+a|为偶函数,则实数a=________.
【解析】 由题意知,函数f(x)=x2-|x+a|为偶函数,则f(1)=f(-1),∴1-|1+a|=1-|-1+a|,∴a=0.
【答案】 0
8.已知y=f(x)+x2是奇函数,且f(1)=1.若g(x)=f(x)+2,则g(-1)=________.
【解析】 因为y=f(x)+x2是奇函数,且x=1时,y=2,所以当x=-1时,y=-2,即f(-1)+(-1)2=-2,得f(-1)=-3,所以g(-1)=f(-1)+2=-1.
【答案】 -1
9.设奇函数f(x)的定义域为[-5,5],当x∈[0,5]时,函数y=f(x)的图象如图所示,则使函数值y<0的x的取值集合为________.
【解析】 由原函数是奇函数,所以y=f(x)在[-5,5]上的图象关于坐标原点对称,由y=f(x)在[0,5]上的图象,得它在[-5,0]上的图象,如图所示.由图象知,使函数值y<0的x的取值集合为(-2,0)∪(2,5).
【答案】 (-2,0)∪(2,5)
10.设f(x)是偶函数,且当x>0时是单调函数,则满足f(2x)=f的所有x之和为________.
【答案】-8
11.已知f(x)是定义在R上的不恒为零的函数,且对任意x,y,f(x)都满足f(xy)=yf(x)+xf(y).
(1)求f(1),f(-1)的值;
(2)判断函数f(x)的奇偶性.
解 (1)因为对定义域内任意x,y,f(x)满足f(xy)=yf(x)+xf(y),所以令x=y=1,得f(1)=0,令x=y=-1,得f(-1)=0.
(2)令y=-1,有f(-x)=-f(x)+xf(-1),代入f(-1)=0得f(-x)=-f(x),所以f(x)是(-∞,+∞)上的奇函数.
12.已知函数f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时,f(x)<0,f(1)=-2.
(1)求证f(x)是奇函数;
(2)求f(x)在[-3,3]上的最大值和最小值.
(1)证明 令x=y=0,知f(0)=0;再令y=-x,
则f(0)=f(x)+f(-x)=0,所以f(x)为奇函数.
(2)解 任取x1<x2,则x2-x1>0,所以f(x2-x1)=f[x2+(-x1)]=f(x2)+f(-x1)=f(x2)-f(x1)<0,所以f(x)为减函数.而f(3)=f(2+1)=f(2)+f(1)=3f(1)=-6,f(-3)=-f(3)=6.
所以f(x)max=f(-3)=6,f(x)min=f(3)=-6.
13.已知函数f(x)是(-∞,+∞)上的奇函数,且f(x)的图象关于x=1对称,当x∈[0,1]时,f(x)=2x-1,
(1)求证:f(x)是周期函数;
(2)当x∈[1,2]时,求f(x)的【解析】式;
(3)计算f(0)+f(1)+f(2)+…+f(2013)的值.
14.已知函数f(x)的定义域为R,且满足f(x+2)=-f(x).
(1)求证:f(x)是周期函数;
(2)若f(x)为奇函数,且当0≤x≤1时,f(x)=x,求使f(x)=-在[0,2 014]上的所有x的个数.
(1)证明 ∵f(x+2)=-f(x),
∴f(x+4)=-f(x+2)=-[-f(x)]=f(x),
∴f(x)是以4为周期的周期函数.
(2)解 当0≤x≤1时,f(x)=x,
设-1≤x≤0,则0≤-x≤1,
∴f(-x)=(-x)=-x.
∵f(x)是奇函数,∴f(-x)=-f(x),
∴-f(x)=-x,即f(x)=x.
故f(x)=x(-1≤x≤1).
又设1