- 944.00 KB
- 2021-06-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
§8.4 直线、平面平行的判定与性质
最新考纲
考情考向分析
1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理.
2.能运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题.
直线、平面平行的判定及其性质是高考中的重点考查内容,涉及线线平行、线面平行、面面平行的判定及其应用等内容.题型主要以解答题的形式出现,解题要求有较强的推理论证能力,广泛应用转化与化归的思想.
1.线面平行的判定定理和性质定理
文字语言
图形语言
符号语言
判定定理
平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简记为“线线平行⇒线面平行”)
⇒l∥α
性质定理
一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”)
⇒l∥b
2.面面平行的判定定理和性质定理
文字语言
图形语言
符号语言
判定定理
一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)
⇒α∥β
性质定理
如果两个平行平面同时和第三个平面相交,那么它们的交线平行
⇒a∥b
知识拓展
重要结论:
(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.
(2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.
(3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.
题组一 思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.( × )
(2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.( × )
(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.( × )
(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.( √ )
(5)若直线a与平面α内无数条直线平行,则a∥α.( × )
(6)若α∥β,直线a∥α,则a∥β.( × )
题组二 教材改编
2.[P61A组T1(1)]下列命题中正确的是( )
A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面
B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行
C.平行于同一条直线的两个平面平行
D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α
答案 D
解析 A中,a可以在过b的平面内;B中,a与α内的直线也可能异面;C中,两平面可相交;D中,由直线与平面平行的判定定理知b∥α,正确.
3.[P62A组T3]如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与平面AEC的位置关系为________.
答案 平行
解析 连接BD,设BD∩AC=O,连接EO,
在△BDD1中,E为DD1的中点,O为BD的中点,所以EO为△BDD1的中位线,则BD1∥EO,
而BD1⊄平面ACE,EO⊂平面ACE,
所以BD1∥平面ACE.
题组三 易错自纠
4.若平面α∥平面β,直线a∥平面α,点B∈β,则在平面β内且过B点的所有直线中( )
A.不一定存在与a平行的直线
B.只有两条与a平行的直线
C.存在无数条与a平行的直线
D.存在唯一与a平行的直线
答案 A
解析 当直线a在平面β内且过B点时,不存在与a平行的直线,故选A.
5.设α,β,γ为三个不同的平面,a,b为直线,给出下列条件:
①a⊂α,b⊂β,a∥β,b∥α; ②α∥γ,β∥γ;
③α⊥γ,β⊥γ; ④a⊥α,b⊥β,a∥b.
其中能推出α∥β的条件是______.(填上所有正确的序号)
答案 ②④
解析 在条件①或条件③中,α∥β或α与β相交;
由α∥γ,β∥γ⇒α∥β,条件②满足;
在④中,a⊥α,a∥b⇒b⊥α,又b⊥β,从而α∥β,④满足.
6.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.
答案 平行四边形
解析 ∵平面ABFE∥平面DCGH,
又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,
∴EF∥HG.同理EH∥FG,
∴四边形EFGH是平行四边形.
题型一 直线与平面平行的判定与性质
命题点1 直线与平面平行的判定
典例 如图,在四棱锥P-ABCD中,AD∥BC,AB=BC=AD,E,F,H分别为线段AD,PC,CD的中点,AC与BE交于O点,G是线段OF上一点.
(1)求证:AP∥平面BEF;
(2)求证:GH∥平面PAD.
证明 (1)连接EC,
∵AD∥BC,BC=AD,
∴BC綊AE,
∴四边形ABCE是平行四边形,
∴O为AC的中点.又F是PC的中点,∴FO∥AP,
又FO⊂平面BEF,AP⊄平面BEF,∴AP∥平面BEF.
(2)连接FH,OH,∵F,H分别是PC,CD的中点,
∴FH∥PD,又PD⊂平面PAD,FH⊄平面PAD,
∴FH∥平面PAD.
又O是BE的中点,H是CD的中点,
∴OH∥AD,又AD⊂平面PAD,OH⊄平面PAD,
∴OH∥平面PAD.
又FH∩OH=H,∴平面OHF∥平面PAD.
又GH⊂平面OHF,∴GH∥平面PAD.
命题点2 直线与平面平行的性质
典例(2017·长沙调研)如图,四棱锥P-ABCD的底面是边长为8的正方形,四条侧棱长均为2.点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH.
(1)证明:GH∥EF;
(2)若EB=2,求四边形GEFH的面积.
(1)证明 因为BC∥平面GEFH,BC⊂平面PBC,
且平面PBC∩平面GEFH=GH,所以GH∥BC.
同理可证EF∥BC,因此GH∥EF.
(2)解 如图,连接AC,BD交于点O,BD交EF于点K,连接OP,GK.
因为PA=PC,O是AC的中点,所以PO⊥AC,
同理可得PO⊥BD.
又BD∩AC=O,且AC,BD⊂底面ABCD,
所以PO⊥底面ABCD.
又因为平面GEFH⊥平面ABCD,
且PO⊄平面GEFH,所以PO∥平面GEFH.
因为平面PBD∩平面GEFH=GK,
所以PO∥GK,且GK⊥底面ABCD,
从而GK⊥EF.
所以GK是梯形GEFH的高.
由AB=8,EB=2得EB∶AB=KB∶DB=1∶4,
从而KB=DB=OB,即K为OB的中点.
再由PO∥GK得GK=PO,
即G是PB的中点,且GH=BC=4.
由已知可得OB=4,
PO===6,
所以GK=3.
故四边形GEFH的面积S=·GK=×3=18.
思维升华判断或证明线面平行的常用方法
(1)利用线面平行的定义(无公共点).
(2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α).
(3)利用面面平行的性质(α∥β,a⊂α⇒a∥β).
(4)利用面面平行的性质(α∥β,a⊄α,a⊄β,a∥α⇒a∥β).
跟踪训练 (2018届昆明一中摸底)如图,在直三棱柱ABC—A1B1C1中,∠BAC=90°,AB=AC=2,点M,N分别为A1C1,AB1的中点.
(1)证明:MN∥平面BB1C1C;
(2)若CM⊥MN,求三棱锥M—NAC的体积.
(1)证明 连接A1B,BC1,点M,N分别为A1C1,AB1的中点,所以MN为△A1BC1的一条中位线,MN∥BC1,
又因为MN⊄平面BB1C1C,BC1⊂平面BB1C1C,
所以MN∥平面BB1C1C.
(2)解 设点D,E分别为AB,AA1的中点,AA1=a,连接ND,CD,则CM2=a2+1,MN2=1+=,CN2=+5=,由CM⊥MN,得CM2+MN2=CN2,解得a=,又NE⊥平面AA1C1C,NE=1,
V三棱锥M—NAC=V三棱锥N—AMC=S△AMC·NE
=××2××1=.
所以三棱锥M—NAC的体积为.
题型二 平面与平面平行的判定与性质
典例 如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1
的中点,求证:
(1)B,C,H,G四点共面;
(2)平面EFA1∥平面BCHG.
证明 (1)∵G,H分别是A1B1,A1C1的中点,
∴GH是△A1B1C1的中位线,
∴GH∥B1C1.
又∵B1C1∥BC,∴GH∥BC,
∴B,C,H,G四点共面.
(2)∵E,F分别是AB,AC的中点,
∴EF∥BC.
∵EF⊄平面BCHG,BC⊂平面BCHG,
∴EF∥平面BCHG.
∵A1G綊EB,
∴四边形A1EBG是平行四边形,
∴A1E∥GB.
又∵A1E⊄平面BCHG,GB⊂平面BCHG,
∴A1E∥平面BCHG.
又∵A1E∩EF=E,A1E,EF⊂平面EFA,
∴平面EFA1∥平面BCHG.
引申探究
在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.
证明 如图所示,连接A1C交AC1于点M,
∵四边形A1ACC1是平行四边形,
∴M是A1C的中点,连接MD,
∵D为BC的中点,
∴A1B∥DM.
∵A1B⊂平面A1BD1,
DM⊄平面A1BD1,
∴DM∥平面A1BD1.
又由三棱柱的性质知,D1C1綊BD,
∴四边形BDC1D1为平行四边形,
∴DC1∥BD1.
又DC1⊄平面A1BD1,BD1⊂平面A1BD1,
∴DC1∥平面A1BD1.
又∵DC1∩DM=D,DC1,DM⊂平面AC1D,
∴平面A1BD1∥平面AC1D.
思维升华证明面面平行的方法
(1)面面平行的定义.
(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.
(3)利用垂直于同一条直线的两个平面平行.
(4)两个平面同时平行于第三个平面,那么这两个平面平行.
(5)利用“线线平行”“线面平行”“面面平行”的相互转化.
跟踪训练 (2018届江西南昌市摸底)如图,在四棱锥P—ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,PA=2,AB=1.设M,N分别为PD,AD的中点.
(1)求证:平面CMN∥平面PAB;
(2)求三棱锥P—ABM的体积.
(1)证明 ∵M,N分别为PD,AD的中点,∴MN∥PA.
又∵MN⊄平面PAB,PA⊂平面PAB,
∴MN∥平面PAB.
在Rt△ACD中,∠CAD=60°,CN=AN,
∴∠ACN=60°.又∵∠BAC=60°,∴CN∥AB.
∵CN⊄平面PAB,AB⊂平面PAB,∴CN∥平面PAB.
又∵CN∩MN=N,CN,MN⊂平面CMN,
∴平面CMN∥平面PAB.
(2)解 由(1)知,平面CMN∥平面PAB,∴点M到平面PAB的距离等于点C到平面PAB的距离.
由已知得,AB=1,∠ABC=90°,∠BAC=60°,
∴BC=,
∴三棱锥P—ABM的体积V=V三棱锥M—PAB=V三棱锥C—PAB=V三棱锥P—ABC=××1××2=.
题型三 平行关系的综合应用
典例 如图所示,平面α∥平面β,点A∈α,点C∈α,点B∈β,点D∈β,点E,F分别在线段AB,CD上,且AE∶EB=CF∶FD.
(1)求证:EF∥平面β;
(2)若E,F分别是AB,CD的中点,AC=4,BD=6,且AC,BD所成的角为60°,求EF的长.
(1)证明 ①当AB,CD在同一平面内时,由平面α∥平面β,平面α∩平面ABDC=AC,平面β∩平面ABDC=BD知,AC∥BD.
∵AE∶EB=CF∶FD,∴EF∥BD.
又EF⊄β,BD⊂β,∴EF∥平面β.
②当AB与CD异面时,如图所示,
设平面ACD∩平面β=DH,且DH=AC,
∵平面α∥平面β,平面α∩平面ACDH=AC,
∴AC∥DH,
∴四边形ACDH是平行四边形,
在AH上取一点G,使AG∶GH=CF∶FD,
连接EG,FG,BH.
又∵AE∶EB=CF∶FD=AG∶GH,
∴GF∥HD,EG∥BH.
又EG∩GF=G,BH∩HD=H,
∴平面EFG∥平面β.
又EF⊂平面EFG,∴EF∥平面β.
综合①②可知,EF∥平面β.
(2)解 如图所示,连接AD,取AD的中点M,连接ME,MF.
∵E,F分别为AB,CD的中点,
∴ME∥BD,MF∥AC,
且ME=BD=3,MF=AC=2.
∴∠EMF为AC与BD所成的角或其补角,
∴∠EMF=60°或120°.
∴在△EFM中,由余弦定理得
EF=
=
=,
即EF=或EF=.
思维升华利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决.
跟踪训练 如图所示,四边形EFGH为空间四边形ABCD的一个截面,若截面为平行四边形.
(1)求证:AB∥平面EFGH,CD∥平面EFGH;
(2)若AB=4,CD=6,求四边形EFGH周长的取值范围.
(1)证明 ∵四边形EFGH为平行四边形,
∴EF∥HG.
∵HG⊂平面ABD,EF⊄平面ABD,
∴EF∥平面ABD.
又∵EF⊂平面ABC,平面ABD∩平面ABC=AB,
∴EF∥AB,又∵AB⊄平面EFGH,EF⊂平面EFGH,
∴AB∥平面EFGH.同理可证,CD∥平面EFGH.
(2)解 设EF=x(0