- 265.93 KB
- 2021-06-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
雅安中学2020届高三9月考试数学试卷(文)
参考答案
一、选择题
1~5,DCCDC 6~10, ACAAA 11~12, BD
二、填空题13, ∃x∈R,ex>x 14, 4 15, 16, .a>1
三、解答题
17解:由题意知,
化简得,
即
因为, 所以
从而 由正弦定理得
由知
所以 ,
当且仅当时,等号成立 故 的最小值为
18.解:(Ⅰ)取线段的中点,连接, .
因为在△中, , 分别为, 的中点,所以 , .
因为 , 分别为, 的中点,所以 , ,
所以 , ,所以 四边形为平行四边形,所以 .
因为 平面, 平面,所以 平面.
(Ⅱ)为的中点,
又平面平面,
.由图有,,则
19.解析:(Ⅰ)依题意,
回归直线方程为
(Ⅱ)由题意知,在该商品进货量不超过6吨共有5个,设为编码1,2,3,4,5号,任取两个有(1,2)(1,3)(1,4)(1,5)(2,3)(2,4)(2,5)(3,4)(3,5)(4,5)共10种,该商品进货量不超过3吨的有编号1,2号,超过3吨的是编号3,4,5号,该商品进货量恰有一次不超过3吨有(1,3)(1,4)(1,5)(2,3)(2,4)(2,5)共6种,
故该商品进货量恰有一次不超过3吨的概率为
20.解:(1)由题意知,由抛物线的定义知:,
解得,所以抛物线的方程为.
(2)由(1)知,设,,因为,则,由得,故,
故直线的斜率为,因为直线和直线平行,
故可设直线的方程为,代入抛物线方程得,
由题意知,得.
设,则,,
当时,,
可得直线的方程为,
由,整理可得,
所以直线恒过点,
当时,直线的方程为,过点,
所以直线恒过定点.
21.解:(1)因为,所以
又因为,所以,即……5分
(2)因为,所以,令,
则,
令,解得,令,解得,
则函数在上单调递增,在上单调递减,所以,
又当时,,当时,,
画出函数的图象,要使函数的图象与有两个不同的交点,则,即实数的取值范围为.
22.解:(Ⅰ)由(为参数)消去参数得:,
将曲线的方程化成极坐标方程得:,
∴曲线是以为圆心为半径的圆.
(Ⅱ)设,由与圆M联立方程可得
,
∵O,A,C三点共线,则 ①,
∴用代替可得,
.
23.解:(1)等价于或或,
解得或。
故不等式的解集为。
(2)因为:,
所以:。
由题意得:,
解得或。
欢迎访问“高中试卷网”——http://sj.fjjy.org