• 806.50 KB
  • 2021-06-10 发布

2019届福建省晋江市(安溪一中、养正中学、惠安一中、泉州实验中学四校)高三上学期期中考试数学(理)试题

  • 9页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2019届福建省晋江市(安溪一中、养正中学、惠安一中、泉州实验中学四校)高三上学期期中考试数学(理)试题 考试科目:数学(理科) 满分:150分 考试时间:120分钟 ‎ 第Ⅰ卷 (选择题 共60分)‎ 一. 选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。‎ ‎(1)已知集合,,则下列关系中正确的是( )‎ ‎(A) (B) (C) (D)‎ ‎(2)若复数满足,则的共轭复数为( )‎ ‎(A)    (B)    (C)     (D)‎ ‎(3) ( )‎ ‎(A) (B) (C) (D)‎ ‎(4)下列函数中,既是偶函数又在单调递增的函数是( ) ‎ ‎(A) (B) (C) (D)‎ ‎(5)为了得到函数的图象,只需把函数的图象( )‎ ‎(A)向左平移个长度单位 (B)向右平移个长度单位 ‎(C)向左平移个长度单位 (D)向右平移个长度单位 ‎(6)已知等差数列的前项和为,则“的最大值是”是“”的( )‎ ‎(A)充分不必要条件 (B)必要不充分条件 ‎(C)充分必要条件 (D)既不充分也不必要条件 ‎(7)已知满足约束条件,且的最小值为,则实数的值为( )‎ ‎(A) (B) (C) (D)‎ ‎(8)曲线,直线及轴所围成的图形的面积为( )‎ ‎(A) (B) (C) (D)‎ ‎(9)已知函数(,)的部分图象 如图,则( )‎ ‎(A) (B) ‎ ‎(C) (D) ‎ ‎(10)在边长为1的正方形中,且,,则( )‎ ‎ (A)1     (B)     (C)    (D)‎ ‎(11)已知两个等差数列和的前项和分别为和,且,则使得为整数的正整数的个数是( ) ‎ ‎(A) (B) (C) (D) ‎ ‎(12) 若函数,在区间上任取三个实数均存在以,,为边长的三角形,则实数的取值范围是( )‎ ‎(A) (B) (C) (D)‎ 第Ⅱ卷(非选择题 共90分)‎ 本卷包括必考题和选考题两个部分。第(13)题--第(21)题为必考题,每个考生都必须作答。第(22)题--第(23)题为选考题,考生根据要求作答。‎ 一. 填空题. (本大题共4小题,每小题5分,共20分)‎ ‎(13)已知,则______________.‎ ‎(14)已知向量,满足,,,则在上的投影的最小值是 .‎ ‎(15)已知等比数列,,的公比分别为,,,记 ‎,,‎ 则 .‎ ‎(16)在中,分别是角的对边,若,则的最大值是 .‎ 一. 解答题:解答应写出文字说明,证明过程或演算步骤 ‎(17)(本小题满分12分)‎ 已知函数.‎ ‎(Ⅰ) 求在区间上的最大值和最小值;‎ ‎(Ⅱ) 若,求的值.‎ ‎(18)(本小题满分12分)‎ 已知数列的前项和为,且.‎ ‎(Ⅰ)求数列的通项公式;‎ ‎(Ⅱ)若数列的前项和为,求以及的最小值.‎ ‎(19)(本小题满分12分)‎ 如图,四棱锥中,底面为平行四边形,,‎ ‎,底面.‎ ‎(Ⅰ)证明:;‎ ‎(Ⅱ)求平面与平面所成的锐二面角的大小.‎ ‎(20)(本小题满分12分)‎ 在中,角A、B、C的对边分别为a、b、c,且,.‎ ‎(Ⅰ)求和的大小;‎ ‎(Ⅱ)若是边上的点,,求的面积的最小值.‎ ‎(21)(本小题满分12分)‎ 已知函数 ‎(Ⅰ)求的单调区间;‎ ‎(Ⅱ)设的最小值为,证明:‎ 请考生从第(22)、(23)题中任选一题作答。注意:只能做所选定的题目。如果多做,则按所做的第一个题目计分,作答时请用2B铅笔在答题卡上将所选题号后的 方框涂黑。‎ ‎(22)(本小题满分10分)选修4—4:坐标系与参数方程 在平面直角坐标系中,已知曲线(为参数),在以原点为极点,轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为.‎ ‎(1)求曲线的普通方程和直线的直角坐标方程;‎ ‎(2)过点且与直线平行的直线交于,两点,求点到,两点的距离之积.‎ ‎(23)(本小题满分10分)选修4-5:不等式选讲 已知函数.‎ ‎(1)求不等式的解集;‎ ‎(2)对任意,都有成立,求实数的取值范围.‎ 安溪一中、养正中学、惠安一中、泉州实验中学 ‎2018年秋季高三期中联考参考答案及评分说明 一. 选择题 ‎1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. ‎ 二. 填空题 ‎13. 14. 15. (都可以) 16. ‎ 三.解答题 ‎17. 解:‎ ‎(Ⅰ) ∵在区间上是增函数,在上是减函数…………5分 ‎…………6分 ‎∴…………8分 ‎(Ⅱ)∵∴…………9分 ‎∵ ‎ ‎…………12分 18. 解:‎ ‎(Ⅰ)当时,。………………1分 当时,,………………2分 所以,即, ………………4分 所以数列是首项为2,公比为2的等比数列,故. ………………6分 ‎(Ⅱ)令, ‎ ‎,…………①  ………………7分 ‎①×,得,…………②………………8分 ‎①-②,得,……………9分 整理,得,……………10分 又令,则,是所以,是单调递减数列…………11分 所以.的最小值为………………12分 ‎19. 解:‎ ‎(Ⅰ)因为,由余弦定理得 …………1分 从而,故…………3分 又底面,可得…………4分 所以平面. …………5分 故…………6分 ‎(Ⅱ)如图,以为坐标原点,的长为单位长,射线为轴的正半轴建立空间直角坐标系,…………7分 则,,,‎ 易得平面的一个法向量为 …………8分 设平面PBC的法向量为,则 …………9分 可取…………10分 ‎…………11分 故平面与平面所成的锐二面角的大小为 …………12分 ‎20. 解:(Ⅰ)已知,由正弦定理,得,‎ 因为,所以,所以. …………………………2分 ‎ 由,得,由余弦定理,得,……4分 ‎(Ⅱ)设,在中由正弦定理,得 所以 ,同理…………………8分 故 ‎,此时……12分 ‎21. 解:(Ⅰ) …………1分, 设 ‎…………2分 所以在上单调递减,在上单调递增…………3分 ‎,即…………4分 所以在上单调递增…………5分 ‎(Ⅱ) ,…………6分, 设 ‎,…………7分, 设 ‎,所以在上单调递增 ‎,即,所以在上单调递增…………8分 所以在上恰有一个零点且…………9分 在上单调递减,在上单调递增…………10分 ‎,…………11分 由(Ⅰ)知在上单调递增 所以 所以…………12分 ‎22. 解:(Ⅰ)曲线化为普通方程为:,………………………2分 由,得,……………………4分 所以直线的直角坐标方程为.……………………………………5分 ‎(2)直线的参数方程为(为参数),……………………7分 代入化简得:,…………………9分 设两点所对应的参数分别为,则, ∴. ………10分 23. 解:‎ ‎(Ⅰ),‎ 当时,,即,所以;……………1分 当时,,即,所以;……………2分 当时,,即,所以;……………3分 综上,不等式的解集为.……………4分 ‎(Ⅱ)设……………5分 因为对任意,都有成立,所以.‎ ① 当时,,……………6分 所以 所以,符合.……………7分 ② 当时,,……………8分 所以 所以,符合.……………9分 综上,实数的取值范围是.……………10分