- 75.50 KB
- 2021-06-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
课时跟踪检测(六) 函数的奇偶性及周期性
一、选择题
1.(2015·河南信阳二模)函数f(x)=lg|sin x|是( )
A.最小正周期为π的奇函数
B.最小正周期为2π的奇函数
C.最小正周期为π的偶函数
D.最小正周期为2π的偶函数
2.(2015·大连测试)下列函数中,与函数y=-3|x|的奇偶性相同,且在(-∞,0)上单调性也相同的是( )
A.y=- B.y=log2|x|
C.y=1-x2 D.y=x3-1
3.(2015·唐山统考)f(x)是R上的奇函数,当x≥0时,f(x)=x3+ln(1+x).则当x<0时,f(x)=( )
A.-x3-ln(1-x) B.x3+ln(1-x)
C.x3-ln(1-x) D.-x3+ln(1-x)
4.(2015·长春调研)已知函数f(x)=,若f(a)=,则f(-a)=( )
A. B.-
C. D.-
5.(2015·甘肃天水一模)已知函数f(x)是R上的偶函数,g(x)是R上的奇函数,且g(x)=f(x-1),若f(2)=2,则f(2 014)的值为( )
A.2 B.0
C.-2 D.±2
6.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2+2x,若f(2-a2)>f(a),则实数a的取值范围是( )
A.(-∞,-1)∪(2,+∞) B.(-1,2)
C.(-2,1) D.(-∞,-2)∪(1,+∞)
二、填空题
7.若函数f(x)=x2-|x+a|为偶函数,则实数a=________.
8.(2015·江苏南通二模)设定义在R上的函数f(x)同时满足以下条件:①f(x)+f(-x)=0;②f(x)=f(x+2);③当0≤x≤1时,f(x)=2x-1,则f+f(1)+f+f(2)+f=________.
9.已知f(x),g(x)分别是定义在R上的奇函数和偶函数,且f(x)-g(x)=x,则f(1),g(0),g(-1)之间的大小关系是______________.
10.设f(x)是定义在R上且周期为2的函数,在区间[-1,1]上,f(x)=其中a,b∈R.若f=f,则a+3b的值为________.
三、解答题
11.已知函数f(x)=是奇函数.
(1)求实数m的值;
(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.
12.设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.
(1)求f(π)的值;
(2)当-4≤x≤4时,求f(x)的图象与x轴所围成图形的面积;
(3)写出(-∞,+∞)内函数f(x)的单调区间.
答案
1.选C 易知函数的定义域为,关于原点对称,又f(-x)=lg |sin(-x)|=lg |-sin x|=lg |sin x|=f(x),所以f(x)是偶函数,又函数y=|sin x|的最小正周期为π,所以函数f(x)=lg|sin x|是最小正周期为π的偶函数.
2.选C 函数y=-3|x|为偶函数,在(-∞,0)上为增函数,选项B的函数是偶函数,但其单调性不符合,只有选项C符合要求.
3.选C 当x<0时,-x>0,f(-x)=(-x)3+ln(1-x),∵f(x)是R上的奇函数,∴当x>0时,f(x)=-f(-x)=-[(-x)3+ln(1-x)],∴f(x)=x3-ln(1-x).
4.选C 根据题意,f(x)==1+,而h(x)=是奇函数,故f(-a)=1+h(-a)=1-h(a)=2-[1+h(a)]=2-f(a)=2-=,故选C.
5.选A ∵g(-x)=f(-x-1),∴-g(x)=f(x+1).
又g(x)=f(x-1),∴f(x+1)=-f(x-1),
∴f(x+2)=-f(x),f(x+4)=-f(x+2)=f(x),
则f(x)是以4为周期的周期函数,所以f(2 014)=f(2)=2.
6.选C ∵f(x)是奇函数,∴当x<0时,f(x)=-x2+2x.作出函数f(x)的大致图象如图中实线所示,结合图象可知f(x)是R上的增函数,由f(2-a2)>f(a),得2-a2>a,解得-2<a<1.
7.解析:法一:∵f(-x)=f(x)对于x∈R恒成立,
∴|-x+a|=|x+a|对于x∈R恒成立,两边平方整理得ax=0对于x∈R恒成立,故a=0.
法二:由f(-1)=f(1),得|a-1|=|a+1|得a=0.
答案:0
8.解析:依题意知:函数f(x)为奇函数且周期为2,
∴f+f(1)+f+f(2)+f
=f+f(1)+f+f(0)+f
=f+f(1)-f+f(0)+f
=f+f(1)+f(0)
=2-1+21-1+20-1
=.
答案:
9.解析:在f(x)-g(x)=x中,用-x替换x,得f(-x)-g(-x)=2x,由于f(x),g(x)分别是定义在R上的奇函数和偶函数,所以f(-x)=-f(x),g(-x)=g(x),因此得-f(x)-g(x)=2x.于是解得f(x)=,g(x)=-,于是f(1)=-,g(0)=-1,g(-1)=-,故f(1)>g(0)>g(-1).
答案:f(1)>g(0)>g(-1)
10.解析:因为f(x)是定义在R上且周期为2的函数,所以f=f,且f(-1)=f(1),故f=f,从而=-a+1,即3a+2b=-2.①
由f(-1)=f(1),得-a+1=,即b=-2a.②
由①②得a=2,b=-4,从而a+3b=-10.
答案:-10
11.解:(1)设x<0,则-x>0,
所以f(-x)=-(-x)2+2(-x)=-x2-2x.
又f(x)为奇函数,所以f(-x)=-f(x),
于是x<0时,f(x)=x2+2x=x2+mx,所以m=2.
(2)要使f(x)在[-1,a-2]上单调递增,
结合f(x)的图象知
所以1<a≤3,故实数a的取值范围是(1,3].
12.解:(1)由f(x+2)=-f(x),得
f(x+4)=f[(x+2)+2]=-f(x+2)=f(x),
∴f(x)是以4为周期的周期函数.
∴f(π)=f(-1×4+π)=f(π-4)=-f(4-π)=-(4-π)=π-4.
(2)由f(x)是奇函数与f(x+2)=-f(x),
得f[(x-1)+2]=-f(x-1)=f[-(x-1)],
即f(1+x)=f(1-x).
从而可知函数y=f(x)的图象关于直线x=1对称.
又当0≤x≤1时,f(x)=x,且f(x)的图象关于原点成中心对称,则f(x)的图象如图所示.
设当-4≤x≤4时,f(x)的图象与x轴围成的图形面积为S,
则S=4S△OAB=4×=4.
(3)函数f(x)的单调递增区间为[4k-1,4k+1](k∈Z),
单调递减区间为[4k+1,4k+3](k∈Z).