- 68.00 KB
- 2021-06-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
课时跟踪检测(二十) 三角函数的图象与性质
一、选择题
1.函数y= 的定义域为( )
A.
B.(k∈Z)
C.(k∈Z)
D.R
2.(2015·石家庄一模)函数f(x)=tan的单调递增区间是( )
A.(k∈Z)
B.(k∈Z)
C.(k∈Z)
D.(k∈Z)
3.给定性质:①最小正周期为π;②图象关于直线x=对称,则下列四个函数中,同时具有性质①②的是( )
A.y=sin B.y=sin
C.y=sin D.y=sin|x|
4.(2015·沈阳质检)已知曲线f(x)=sin 2x+cos 2x关于点(x0,0)成中心对称,若x0∈,则x0=( )
A. B. C. D.
5.若函数f(x)=sin(ωx+φ)在区间上是单调减函数,且函数值从1减少到-1,则f=( )
A. B. C. D.1
6.(2015·豫北六校联考)若函数f(x)=cos(2x+φ)的图象关于点成中心对称,且-<φ<,则函数y=f为( )
A.奇函数且在上单调递增
B.偶函数且在上单调递增
C.偶函数且在上单调递减
D.奇函数且在上单调递减
二、填空题
7.函数y=cos的单调减区间为____________________________________.
8.函数y=tan的图象与x轴交点的坐标是________________________.
9.已知函数f(x)=2sin(ωx+φ),对于任意x都有f=f,则f的值为________.
10.(2015·皖南八校二模)已知函数f(x)=sin,其中x∈.当a=时,f(x)的值域是________;若f(x)的值域是,则a的取值范围是________.
三、解答题
11.已知函数f(x)=sin(ωx+φ)的最小正周期为π.
(1)求当f(x)为偶函数时φ的值;
(2)若f(x)的图象过点,求f(x)的单调递增区间.
12.设函数f(x)=sin-2cos2.
(1)求y=f(x)的最小正周期及单调递增区间;
(2)若函数y=g(x)与y=f(x)的图象关于直线x=2对称,当x∈[0,1]时,求函数y=g(x)的最大值.
答案
1.选C ∵cos x-≥0,得cos x≥,∴2kπ-≤x≤2kπ+,k∈Z.
2.选B 由kπ-<2x-<kπ+(k∈Z)得,-<x<+(k∈Z),所以函数f(x)=tan的单调递增区间为(k∈Z),故选B.
3.选B 注意到函数y=sin的最小正周期T==π,当x=时,y=sin=1,因此该函数同时具有性质①②.
4.选C 由题意可知f(x)=2sin,其对称中心为(x0,0),故2x0+=kπ(k∈Z),∴x0=-+(k∈Z),又x0∈,∴k=1,x0=,故选C.
5.选C 由题意得函数f(x)的周期T=2=π,所以ω=2,此时f(x)=sin(2x+φ),将点代入上式得sin=1,所以φ=,所以f(x)=sin,于是f=sin=cos=.
6.选D 因为函数f(x)=cos(2x+φ)的图象关于点成中心对称,则+φ=kπ+,k∈Z.即φ=kπ-,k∈Z,又-<φ<,则φ=-,则y=f=cos=cos=-sin 2x,所以该函数为奇函数且在上单调递减,故选D.
7.解析:由y=cos=cos得
2kπ≤2x-≤2kπ+π(k∈Z),
解得kπ+≤x≤kπ+(k∈Z).
所以函数的单调减区间为(k∈Z).
答案:(k∈Z)
8.解析:由2x+=kπ(k∈Z)得,
x=-(k∈Z).
∴函数y=tan的图象与x轴交点的坐标是,k∈Z.
答案:,k∈Z
9.解析:∵f=f,
∴x=是函数f(x)=2sin(ωx+φ)的一条对称轴.
∴f=±2.
答案:2或-2
10.解析:若-≤x≤,则-≤2x+≤,此时-≤sin≤1,即f(x)的值域是.
若-≤x≤a,则-≤2x≤2a,-≤2x+≤2a+.因为当2x+=-或2x+=时,
sin=-,所以要使f(x)的值域是,则≤2a+≤,即≤2a≤π,
所以≤a≤,即a的取值范围是.
答案:
11.解:∵由f(x)的最小正周期为π,则T==π,∴ω=2.
∴f(x)=sin(2x+φ).
(1)当f(x)为偶函数时,f(-x)=f(x).
∴sin(2x+φ)=sin(-2x+φ),
展开整理得sin 2xcos φ=0,
由已知上式对∀x∈R都成立,
∴cos φ=0,∵0<φ<,∴φ=.
(2)f(x)的图象过点时,sin=,
即sin=.
又∵0<φ<,∴<+φ<π.
∴+φ=,φ=.
∴f(x)=sin.
令2kπ-≤2x+≤2kπ+,k∈Z,
得kπ-≤x≤kπ+,k∈Z.
∴f(x)的单调递增区间为,k∈Z.
12.解:(1)由题意知f(x)=sin-cos-1=·sin-1,所以y=f(x)的最小正周期T==6.
由2kπ-≤-≤2kπ+,k∈Z,
得6k-≤x≤6k+,k∈Z,
所以y=f(x)的单调递增区间为,k∈Z.
(2)因为函数y=g(x)与y=f(x)的图象关于直线x=2对称,
所以当x∈[0,1]时,y=g(x)的最大值即为x∈[3,4]时,
y=f(x)的最大值,
当x∈[3,4]时,x-∈,sin∈,f(x)∈,
即当x∈[0,1]时,函数y=g(x)的最大值为.