- 996.00 KB
- 2021-06-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2017年1月甘肃省河西五市部分普通高中高三第一次联合考试
理科数学
命题学校:嘉峪关市酒钢三中 命题人:康宗仁 王玉胜 赵雪艳
第Ⅰ卷(选择题 共60分)
注意事项:
1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.其中第Ⅱ卷第(22)题~第(23)题为选考题,其他题为必考题,满分150分,考试时间120分钟.
2. 回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号框.写在本试卷上无效.
3. 答题前,考生务必将密封线内项目以及座位号填写清楚,回答第Ⅱ卷时,将答案写在答题卡上,必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效.
一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
(1)已知集合,,则( )
(A) (B) (C) (D)
(2)已知向量,,则( )
(A) (B) (C) (D)
(3)已知,,,则实数的大小关系是( )
(A) (B) (C) (D)
(4)设为虚数单位,则的展开式中含的项为( )
(A) (B) (C) (D)
(5)已知随机变量~,其正态分布密度曲线如图所示,若向正方形中随机投掷10000个点,则落入阴影部分的点的个数的估计值为( )
(A)6038 (B)6587 (C)7028 (D)7539
附:若~,则 ;
;.
(6)函数,则的最大值是( )
(A)0 (B)2 (C)1 (D)3
(7)要测量电视塔的高度,在点测得塔顶的仰角是,在点测得塔顶的仰角是,并测得水平面上的,m,则电视塔的高度是( )
(A)30m (B)40m (C)m (D)m
(8)设p:实数满足,q:实数满足,则p是q的( )
(A)必要不充分条件 (B)充分不必要条件
(C)充要条件 (D)既不充分也不必要条件
(9)设为坐标原点,是以为焦点的抛物线上的任意一点,是线段上的点,且,则直线的斜率的最大值是( )
(A) (B) (C) (D)1
(10)已知某几何体的三视图如图所示,则该几何体的体积是( )
(A) (B) (C) (D)
(11)已知定义在上的偶函数在上单调递减,若不等式对恒成立,则实数的取值范围是( )
(A) (B) (C) (D)
(12)已知函数,为的零点,为图像的对称轴,且在上单调,则的最大值是( )
(A)5 (B)7 (C)9 (D)11
第Ⅱ卷(非选择题 共90分)
本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(23)题为选考题,考生根据要求作答,并用2B铅笔在答题卡上把所选题目的题号涂黑.
一. 填空题:本大题共4小题,每小题5分,共20分.
(13)如图是一个算法的流程图,则输出的值是 .
是
否
(14)已知双曲线E:,若矩形的四个顶点在E上,,的中点为E的两个焦点,且,则E的离心率是 .
(15)用一块矩形铁皮作圆台形铁桶的侧面,要求铁桶的上底半径是24cm,下底半径是16cm,母线长为48cm,则矩形铁皮长边的最小值是 .
(16)定义“规范01数列”如下:中有项,其中项为0,项为1,且对任意,中0的个数不少于1的个数,若,则不同的“规范01数列”共有 个.
三.解答题:解答应写出文字说明,证明过程或演算步骤.
(17)(本小题满分12分)
记.对数列和的非空子集,定义.已知是公比为3的等比数列,且当时,.
(Ⅰ)求数列的通项公式;
(Ⅱ)已知,对任意正整数,求证:.
(18)(本小题满分12分)
如图,在四棱锥中,,,,为棱的中点,异面直线与所成的角为.
(Ⅰ)在平面内找一点,使得直线平面,并说明理由;
(Ⅱ)若二面角的大小为,求直线与平面所成角的正弦值.
(19)(本小题满分12分)
下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.
(Ⅰ)由折线图看出,可用线性回归模型拟合与的关系,请用相关系数加以说明;
(Ⅱ)建立与的回归方程(系数精确到0.01),预测2017年我国生活垃圾无害化处理量.
参考数据:,,,
参考公式:相关系数,
回归方程中斜率和截距最小二乘法估计公式分别为:
,.
(20)(本小题满分12分)
已知椭圆上有两个不同的点,关于直线对称.
(Ⅰ)求实数的取值范围;
(Ⅱ)求面积的最大值(为坐标原点).
(21)(本小题满分12分)
已知函数,其中为自然对数的底数.
(Ⅰ)设(其中为的导函数),判断在上的单调性;
(Ⅱ)若无零点,试确定正数的取值范围.
请从下面所给的(22)、(23)两题中选定一题作答,并用2B铅笔在答题卡上将所选题目对应的题号方框涂黑,按所涂题号进行评分;不涂、多涂均按所答第一题评分;多答按所答第一题评分.
(22)(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(Ⅰ)将曲线的方程化为极坐标方程;
(Ⅱ)已知直线的参数方程为(,为参数,),与交与点,与交与点B,且,求的值.
(23)(本小题满分10分)选修4-5:不等式选讲
已知函数.
(Ⅰ)若不等式恒成立,求实数的取值范围;
(Ⅱ)设且,求证:.
2017年1月河西五市部分普通高中高三第一次
联合考试理科数学
参考答案及评分标准
一、选择题
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
C
C
C
A
B
B
B
A
C
D
B
C
二、填空题
13. 9; 14. 144cm; 15.2; 16. 14.
三、解答题
17.解:(Ⅰ)时,,
, ————5分
(Ⅱ)
. ————12分
18.解:(Ⅰ)在梯形中,与不平行.延长,相交与点,则平面.
由已知且,
所以四边形为平行四边形.
从而,又平面,平面,
平面. ————5分
(Ⅱ)由已知,,,直线直线,平面,又,,直线直线,平面,为二面角的平面角,从而.
如图所示,在平面内,作,以为原点,以,的方向分别为轴,轴的正方向,建立空间直角坐标系,设,则,,,,,,.
设平面的一个法向量,则,设,则.设直线与平面所成角为,则.
所以,直线与平面所成角的正弦值为. ————12分
19.解:(Ⅰ),,,
,,
因为与的相关系数近似为,说明与
的线性相关程度相当高,从而可以用线性回归模型拟合与
的关系. ————5分
(Ⅱ)由及(Ⅰ)得,,
关于的线性回归方程为.
当时,.
所以预测2017年我国生活垃圾无害化处理量约为亿吨. ————12分
20.解:(Ⅰ)由题意知,设直线的方程为,由得
.
①
的中点代入得,②
联立①②得或. ————5分
(Ⅱ)令,则,.
原点到直线的距离为,
的面积,当且仅当时等号成立,故的面积的最大值为. ————12分
21. 解:(Ⅰ),,,
,
在上单调递增. ————5分
(Ⅱ)由知,.
由(Ⅰ)知在上单调递增,且,
时,,有唯一的零点.
设,则时,,单调递增;
时,,单调递减.
.
令,,
在上恒成立,
,在上单调递增,且.
① 当时,,在上单调递增.
,.
,,
有零点,与条件不符;
② 当时,,
,,
有零点,与条件不符;
③ 当时,,
,,
没有零点.
综上所述,当无零点时,. ————12分
22.(Ⅰ) ————5分
(Ⅱ)解一:直线的极坐标方程为,
由得,由得,
,.
又,. ————10分
解二:把直线的参数方程代入的普通方程,
得,
,同理,
.
,,.
23.
(Ⅰ)解一:,,,
. ————5分
解二:,,
,.
(Ⅱ)由(Ⅰ),
,,当且仅当时等号成立,
. ————10分