- 874.00 KB
- 2021-06-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2019--2020学年度高二期中数学文科A卷
一.选择题:
1.已知命题,,则( )
A., B.,
C., D.,
2.如果命题“p∨q”为假命题,则( )
A.p,q均为假命题 B.p,q中至少有一个真命题
C.p,q均为真命题 D.p,q中只有一个真命题
3.设,则“”是“” 的
A.充分而不必要条件 B.必要而不充分条件
C.充要条件 D.既不充分也不必要条件
4.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是
A.中位数 B.平均数
C.方差 D.极差
5. 某超市为了检查货架上的奶粉是否合格,要从编号依次为1到50的袋装奶粉中抽取5袋进行检验,用系统抽样方法确定所选取的5袋奶粉的编号可能是( )
A.6,12,18,24,30 B.2,4,8,16,32
C.2,12,23,35,48 D.7,17,27,37,47
6.已知椭圆的左顶点为,上顶点为,右焦点为,若,则椭圆的离心率为()
A. B.
C. D.
7.双曲线的离心率为,则其渐近线方程为
A. B.
C. D.
9.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.
根据该折线图,下列结论错误的是( )
A. 月接待游客量逐月增加
B. 年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳
9.设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=
A.5 B.6
C.7 D.8
10.已知椭圆C:的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线相切,则C的离心率为
A. B. C. D.
11.已知双曲线mx2-ny2=1与直线y=1+2x交于M,N两点,过原点与线段MN中点所在直线的斜率为,则的值是( )
A.- B. C. D.
12.如图所示,直线为双曲线:的一条渐近线,,是双曲线的左、右焦点,关于直线的对称点为,且是以为圆心,以半焦距为半径的圆上的一点,则双曲线的离心率为( )
A. B. C.2 D.3
二.填空题
13.假设要考察某公司生产的流感疫苗的剂量是否达标,现从500支疫苗中抽取50支进行检验,利用随机数表抽取样本时,先将500支疫苗按000,001,…,499进行编号,如果从随机数表第7行第8列的数开始向右读,请写出第8支疫苗的编号_______.
(下面摘取了随机数表第7行至第9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
14.已知抛物线的焦点和,点为抛物线上的动点,则取到最小值时点的坐标为________
15.已知双曲线:的右顶点为,以为圆心,为半径作圆,圆与双曲线的一条渐近线于交、两点,若,则的离心率为__________.
16.已知离心率为的椭圆:和离心率为的双曲线:有公共的焦点,,P是它们在第一象限的交点,且,则的最小值为__________________.
三.解答题
17.已知 ,:关于的方程有实数根.
(1)若为真命题,求实数的取值范围;
(2)若为真命题,为真命题,求实数的取值范围.
18.在十九大“建设美丽中国”的号召下,某省级生态农业示范县大力实施绿色生产方案,对某种农产品进行改良,为了检查改良效果,从中随机抽取100件作为样本,称出它们的重量(单位:克),重量分组区间为,,,,由此得到样本的重量频率分布直方图(如图).
(1)求的值;
(2)根据样本数据,估计样本中个体的重量的众数与平均值;
19.某同学在研究性学习中,收集到某工厂今年前5个月某种产品的产量(单位:万件)的数据如下表:
x(月份)
1
2
3
4
5
y(产量)
4
4
5
6
6
(1) 求出y关于x的线性回归方程.
(2) 估计今年6月份该种产品的产量.
参考公式:,.
20.已知椭圆的焦点在轴上,短轴长为2,离心率为.
(1)求椭圆的标准方程;
(2)直线:与椭圆相交于,两点,且弦中点横坐标为1,求值.
21.已知椭圆的离心率为,短轴一个端点到右焦点的距离为.
(1)求椭圆C的方程;
(2)设直线l与椭圆C交于A,B两点,坐标原点O到直线l的距离为,求三角形AOB面积的最大值.
22.已知抛物线上一点到其焦点F的距离为5.
(1)求抛物线C的方程;
(2)设直线l与抛物线C交于A、B两点,O为坐标原点,若,求证:直线l必过一定点,并求出该定点的坐标;
(3)过点的直线m与抛物线C交于不同的两点M、N,若,求直线m的斜率的取值范围.
参考答案
1.A 2.A 3.A 4.A 5.B 6.A 7.A 8.A 9.D 10.A 11.B 12.C
13.068 14. 15. 16.
17.(1);(2)
(1) 方程有实数根,得:得;
(2)为真命题,为真命题
为真命题,为假命题,即得.
18.(1); (2)25,克;
19解.由题意,可得,,
,
,
所以,则,
所以回归直线的方程为.
当时,.
故今年6月份该种产品的产量大约为6.8万件.
20.解:(1)椭圆的焦点在轴上,短轴长为2,离心率为,
可得,解得,,所以椭圆方程为.
(2)由,得,
,得,
设,,则,∴,得,符合题意.
21.(1);(2).
(1)设椭圆的半焦距为,依题意
,所求椭圆方程为.
(2)设,.
①当轴时,.
②当与轴不垂直时,设直线的方程为.
由已知,得.
把代入椭圆方程,整理得 ,
,
.
当且仅当,即时等号成立.
当时,,综上所述.
当时,取得最大值,面积也取得最大值.
.
22.(1)(2)直线l过定点,证明见解析(3)
解:(1)解法1:由题意,根据抛物线的定义,有,解得,
所以抛物线C的方程为;
解法2:将代入得,,
又点到其焦点F的距离为5,焦点坐标为,所以,
将代入整理得,解得,
故抛物线C的方程为;
(2)依题意,直线l的斜率存在,设l的方程为,
由得,
设,,则,,
所以
,
令,得,所以直线l过定点.
(3)依题意,直线m的斜率k存在且,设m的方程为,
由消去y,得,
由,即,解得或.
设,,则,,且,,
所以
,
因为,所以,解得;
所以,直线m的斜率的取值范围是.