- 136.00 KB
- 2021-06-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第3课时 深化提能——与圆有关的综合问题
圆的方程是高中数学的一个重要知识点,高考中,除了圆的方程的求法外,圆的方程与其他知识的综合问题也是高考考查的热点,常涉及轨迹问题和最值问题.解决此类问题的关键是数形结合思想的运用.
与圆有关的轨迹问题
[典例] 已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点.
(1)求线段AP中点的轨迹方程;
(2)若∠PBQ=90°,求线段PQ中点的轨迹方程.
[解] (1)设AP的中点为M(x,y),由中点坐标公式可知,P点坐标为(2x-2,2y).
因为P点在圆x2+y2=4上,所以(2x-2)2+(2y)2=4.
故线段AP中点的轨迹方程为(x-1)2+y2=1.
(2)设PQ的中点为N(x,y).
在Rt△PBQ中,|PN|=|BN|.
设O为坐标原点,连接ON,则ON⊥PQ,所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,
所以x2+y2+(x-1)2+(y-1)2=4.
故线段PQ中点的轨迹方程为x2+y2-x-y-1=0.
[方法技巧] 求与圆有关的轨迹问题的4种方法
[针对训练]
1.(2019·厦门双十中学月考)点P(4,-2)与圆x2+y2=4上任意一点连接的线段的中点的轨迹方程为( )
A.(x-2)2+(y+1)2=1 B.(x-2)2+(y+1)2=4
C.(x+4)2+(y-2)2=4 D.(x+2)2+(y-1)2=1
解析:选A 设中点为A(x,y),圆上任意一点为B(x′,y′),
由题意得,则
故(2x-4)2+(2y+2)2=4,化简得,(x-2)2+(y+1)2=1,故选A.
2.已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.
(1)求M的轨迹方程;
(2)当|OP|=|OM|时,求l的方程及△POM的面积.
解:(1)圆C的方程可化为x2+(y-4)2=16,所以圆心为C(0,4),半径为4.
设M(x,y),则=(x,y-4),=(2-x,2-y).
由题设知·=0,
故x(2-x)+(y-4)(2-y)=0,
即(x-1)2+(y-3)2=2.
由于点P在圆C的内部,
所以M的轨迹方程是(x-1)2+(y-3)2=2.
(2)由(1)可知M的轨迹是以点N(1,3)为圆心,为半径的圆.
由于|OP|=|OM|,故O在线段PM的垂直平分线上.
又P在圆N上,从而ON⊥PM.
因为ON的斜率为3,所以l的斜率为-,
故l的方程为x+3y-8=0.
又|OM|=|OP|=2,O到l的距离为,
所以|PM|=,S△POM=××=,
故△POM的面积为.
与圆有关的最值或范围问题
[例1] (2019·兰州高三诊断)已知圆C:(x-1)2+(y-4)2=10和点M(5,t),若圆C上存在两点A,B使得MA⊥MB,则实数t的取值范围是( )
A.[-2,6] B.[-3,5]
C.[2,6] D.[3,5]
[解析] 法一:当MA,MB是圆C的切线时,∠AMB取得最大值.若圆C上存在两点A,B使得MA⊥MB,则MA,MB是圆C的切线时,∠AMB≥90°,∠AMC≥45°,且∠AMC<90°,如图,所以|MC|=≤=,所以16+(t-4)2≤20,所以2≤t≤6,故选C.
法二:由于点M(5,t)是直线x=5上的点,圆心的纵坐标为4,所以实数t的取值范围一定关于 t=4对称,故排除选项A、B.当t=2时,|CM|=2,若MA,MB为圆C的切线,则sin∠CMA=sin∠CMB==,所以∠CMA=∠CMB=45°,即MA⊥MB,所以t
=2时符合题意,故排除选项D.选C.
[答案] C
[例2] 已知实数x,y满足方程x2+y2-4x+1=0.求:
(1)的最大值和最小值;
(2)y-x的最大值和最小值;
(3)x2+y2的最大值和最小值.
[解] 原方程可化为(x-2)2+y2=3,表示以(2,0)为圆心,为半径的圆.
(1)的几何意义是圆上一点与原点连线的斜率,
所以设=k,即y=kx.
当直线y=kx与圆相切时,斜率k取最大值或最小值,此时= ,解得k=±.
所以的最大值为,最小值为-.
(2)y-x可看成是直线y=x+b在y轴上的截距.
当直线y=x+b与圆相切时,纵截距b取得最大值或最小值,此时=,
解得b=-2±.
所以y-x的最大值为-2+,最小值为-2-.
(3)x2+y2表示圆上的一点与原点距离的平方.
由平面几何知识知,x2+y2在原点和圆心的连线与圆的两个交点处分别取得最小值,最大值.
因为圆心到原点的距离为=2,
所以x2+y2的最大值是(2+)2=7+4,
最小值是(2-)2=7-4.
与圆有关最值问题的求解策略
处理与圆有关的最值问题时,应充分考虑圆的几何性质,并根据代数式的几何意义,借助数形结合思想求解.与圆有关的最值问题,常见类型及解题思路如下:
常见类型
解题思路
μ=型
转化为动直线斜率的最值问题
t=ax+by型
转化为动直线截距的最值问题,或用三角代换求解
m=(x-a)2+(y-b)2型
转化为动点与定点的距离的平方的最值问题
1.(2019·新余一中月考)直线x+y+t=0与圆x2+y2=2相交于M,N两点,已知O是坐标原点,若|+|≤||,则实数t的取值范围是________.
解析:由|+|≤||=|-|,
两边平方,得·≤0,
所以圆心到直线的距离d=≤×=1,
解得-≤t≤,
故实数t的取值范围是[-, ].
答案:[-, ]
2.已知点P(x,y)在圆x2+(y-1)2=1上运动,则的最大值与最小值分别为________.
解析:设=k,则k表示点P(x,y)与点A(2,1)连线的斜率.
当直线PA与圆相切时,k取得最大值与最小值.
设过(2,1)的直线方程为y-1=k(x-2),即kx-y+1-2k=0.
由=1,解得k=±.
答案:,-
3.(2019·大庆诊断考试)过动点P作圆:(x-3)2+(y-4)2=1的切线PQ,其中Q为切点,若|PQ|=|PO|(O为坐标原点),则|PQ|的最小值是________.
解析:由题可知圆(x-3)2+(y-4)2=1的圆心N(3,4).设点P的坐标为(m,n),则|PN|2=|PQ|2+|NQ|2=|PQ|2+1,又|PQ|=|PO|,所以|PN|2=|PO|2+1,即(m-3)2+(n-4)2=m2+n2+1,化简得3m+4n=12,即点P在直线3x+4y=12上,则|PQ|的最小值为点O到直线3x+4y=12的距离,点O到直线3x+4y=12的距离d=,故|PQ|的最小值是.
答案: