• 882.00 KB
  • 2021-06-10 发布

2021届浙江新高考数学一轮复习教师用书:第十章 1 第1讲 分类加法计数原理与分步乘法计数原理

  • 14页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
知识点 最新考纲 两个计数原理 理解分类加法计数原理和分步乘法计数原理.‎ 排列与组合 了解排列、组合的概念,会用排列数公式,组合数公式解决简单的实际问题.‎ 二项式定理 了解二项式定理,理解二项式系数的性质.‎ 随机事件的概率 ‎ 了解事件、互斥事件、对立事件的概念.‎ ‎ 了解概率与频率的概念.‎ 古典概型 了解古典概型、会计算古典概型中事件的概率.‎ 离散型随机变量及其分布列 了解取有限个值的离散型随机变量及其分布列的概念,了解两点分布.‎ 二项分布及其应用 ‎ 了解独立事件的概念.‎ ‎ 了解独立重复试验的模型及二项分布.‎ 离散型随机变量的均值与方差 了解离散型随机变量均值、方差的概念.‎ 第1讲 分类加法计数原理与分步乘法计数原理 ‎1.两个计数原理 两个计数原理 目标 策略 过程 方法总数 分类加法计数原理 完成一件事 有两类不同的方案 在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法 N=m+n种不同的方法 分步乘法计数原理 需要两个步骤 做第1步有m种不同的方法,做第2步有n种不同的方法 N=m×n种不同的方法 ‎2.两个计数原理的区别 分类加法计数原理与分类有关,各种方法相互独立,‎ 用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.‎ ‎[疑误辨析]‎ 判断正误(正确的打“√”,错误的打“×”)‎ ‎(1)在分类加法计数原理中,两类不同方案中的方法可以相同.(  )‎ ‎(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.(  )‎ ‎(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.(  )‎ ‎(4)在分步乘法计数原理中,事件是分两步完成的,其中任何一个单独的步骤都能完成这件事.(  )‎ 答案:(1)× (2)√ (3)√ (4)×‎ ‎[教材衍化]‎ ‎1.(选修23P10练习T4改编)已知某公园有4个门,从一个门进,另一个门出,则不同的走法的种数为(  )‎ A.16           B.13‎ C.12 D.10‎ 解析:选C.将4个门编号为1,2,3,4,从1号门进入后,有3种出门的方式,共3种走法,从2,3,4号门进入,同样各有3种走法,共有不同走法4×3=12(种).‎ ‎2.(选修23P12A组T2改编)如图,从A城到B城有3条路;从B城到D城有4条路;从A城到C城有4条路,从C城到D城有5条路,则某旅客从A城到D城共有________条不同的路线.‎ 解析:不同路线共有3×4+4×5=32(条).‎ 答案:32‎ ‎3.(选修23P12A组T5改编)已知集合M={1,-2,3},N={-4,5,6,-7},从M,N这两个集合中各选一个元素分别作为点的横坐标,纵坐标,则这样的坐标在直角坐标系中可表示第一、第二象限内不同的点的个数是________.‎ 解析:分两步:第一步先确定横坐标,有3种情况,第二步再确定纵坐标,有2种情况,因此第一、二象限内不同点的个数是3×2=6.‎ 答案:6‎ ‎[易错纠偏]‎ 分类、分步标准不清致误 ‎1.从0,1,2,3,4,5这六个数字中,任取两个不同数字相加,其和为偶数的不同取法的种数有(  )‎ A.30 B.20‎ C.10 D.6‎ 解析:选D.从0,1,2,3,4,5这六个数字中,任取两个不同数字相加和为偶数可分为两类,①取出的两数都是偶数,共有3种方法;②取出的两数都是奇数,共有3种方法,故由分类加法计数原理得共有N=3+3=6(种).‎ ‎2.某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个新节目插入节目单中,那么不同的插法种数为________.‎ 解析:3个新节目一个一个插入节目单中,分别有7,8,9种方法,所以不同的插法种数为7×8×9=504.‎ 答案:504‎ ‎3.书架的第1层放有4本不同的语文书,第2层放有5本不同的数学书,第3层放有6本不同的体育书.从书架上任取1本书,不同的取法种数为________,从第1,2,3层分别各取1本书,不同的取法种数为________. ‎ 解析:由分类加法计数原理知,从书架上任取1本书,不同的取法种数为4+5+6=15.由分步乘法计数原理知,从1,2,3层分别各取1本书,不同的取法种数为4×5×6=120.‎ 答案:15 120‎ ‎      分类加法计数原理 ‎ (1)椭圆+=1(m>0,n>0)的焦点在x轴上,且m∈{1,2,3,4,5},n∈{1,2,3,4,5,6,7},则这样的椭圆的个数为(  )‎ A.10           B.12‎ C.20 D.35‎ ‎(2)在所有的两位数中,个位数字大于十位数字的两位数的个数为________.‎ ‎【解析】 (1)因为焦点在x轴上,所以m>n,以m的值为标准分类,由分类加法计数原理,可分为四类:第一类:m=5时,使m>n,n有4种选择;第二类:m=4时,使m>n,n有3种选择;第三类:m=3时,使m>n,n有2种选择;第四类:m=2时,使m>n,n有1种选择.故符合条件的椭圆共有10个.故选A.‎ ‎(2)根据题意,将十位上的数字按1,2,3,4,5,6,7,8的情况分成8类,‎ 在每一类中满足题目条件的两位数分别是8个,7个,6个,5个,4个,3个,2个,1个.‎ 由分类加法计数原理知,符合条件的两位数共有8+7+6+5+4+3+2+1=36(个).‎ ‎【答案】 (1)A (2)36‎ ‎ 1.(变条件)在本例(1)中,若m∈{1,2,…,k},n∈{1,2,…,k}(k∈N*),其他条件不变,这样的椭圆的个数为________.‎ 解析:因为m>n.‎ 当m=k时,n=1,2,…,k-1.‎ 当m=k-1时,n=1,2,…,k-2.‎ ‎…‎ 当m=3时,n=1,2.‎ 当m=2时,n=1.‎ 所以共有1+2+…+(k-1)=(个).‎ 答案: ‎ 2.(变条件)若本例(2)条件变为“个位数字不小于十位数字”,则两位数的个数为________.‎ 解析:分两类:一类:个位数字大于十位数字的两位数,由本例(2)知共有36个;另一类:个位数字与十位数字相同的有11,22,33,44,55,66,77,88,99,共9个.由分类加法计数原理知,共有36+9=45(个).‎ 答案:45‎ 分类加法计数原理的两个条件 ‎(1)根据问题的特点能确定一个适合它的分类标准,然后在这个标准下进行分类;‎ ‎(2)完成这件事的任何一种方法必须属于某一类,并且分别属于不同类的两种方法是不同的方法,只有满足这些条件,才可以用分类加法计数原理.  ‎ ‎1.甲、乙两人进行乒乓球比赛,先赢三局者获胜,决出胜负为止,则所有可能出现的情况(各人输赢局次的不同视为不同情况)共有(  )‎ A.10种 B.15种 C.20种 D.30种 解析:选C.首先分类计算假如甲赢,比分3∶0是1种情况;比分3∶1共有3种情况,分别是前3局中(因为第四局肯定要赢),第一或第二或第三局输,其余局数获胜;比分是3∶2共有6种情况,就是说前4局2∶2,最后一局获胜,前4局中,用排列方法,从4局中选2局获胜,有6种情况.甲一共有1+3+6=10种情况获胜.所以加上乙获胜情况,‎ 共有10+10=20种情况.‎ ‎2.已知集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是(  )‎ A.9 B.14‎ C.15 D.21‎ 解析:选B.因为P={x,1},Q={y,1,2},且P⊆Q,‎ 所以x∈{y,2}.‎ 所以当x=2时,y=3,4,5,6,7,8,9,共7种情况;‎ 当x=y时,x=3,4,5,6,7,8,9,共7种情况.‎ 故共有7+7=14种情况,即这样的点的个数为14.‎ ‎      分步乘法计数原理 ‎ (1)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(  )‎ A.24          B.18‎ C.12 D.9‎ ‎(2)有六名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有________种不同的报名方法.‎ ‎【解析】 (1)由题意可知E→F共有6种走法,F→G共有3种走法,由乘法计数原理知,共有6×3=18种走法,故选B.‎ ‎(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目有4种选法,根据分步乘法计数原理,可得不同的报名方法共有6×5×4=120(种).‎ ‎【答案】 (1)B (2)120‎ ‎ 1.(变条件)若将本例(2)中的条件“每项限报一人,且每人至多参加一项”改为“每人恰好参加一项,每项人数不限”,则有多少种不同的报名方法?‎ 解:每人都可以从这三个智力项目中选报一项,各有3种不同的报名方法,根据分步乘法计数原理,可得不同的报名方法共有36=729(种).‎ ‎2.(变条件)若将本例(2)条件中的“每人至多参加一项”改为“每人参加的项目数不限”,其他不变,则有多少种不同的报名方法?‎ 解:每人参加的项目数不限,因此每一个项目都可以从六人中任选一人,根据分步乘法计数原理,可得不同的报名方法共有63=216(种).‎ 利用分步乘法计数原理解题的策略 ‎(1)要按事件发生的过程合理分步,即分步是有先后顺序的.‎ ‎(2)分步要做到“步骤完整”,只有完成了所有步骤,才完成任务,根据分步乘法计数原理,把完成每一步的方法数相乘,得到总方法数.‎ ‎[提醒] 分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.  ‎ ‎1.将3张不同的电影票分给10名同学中的3人,每人1张,则不同的分法种数是(  )‎ A.2 160 B.720‎ C.240 D.120‎ 解析:选B.分步来完成此事.第1张电影票有10种分法;第2张电影票有9种分法;第3张电影票有8种分法,共有10×9×8=720种分法.‎ ‎2.已知集合M={-3,-2,-1,0,1,2},P(a,b)(a,b∈M)表示平面上的点,则 ‎(1)P可表示平面上________个不同的点;‎ ‎(2)P可表示平面上________个第二象限的点.‎ 解析:(1)确定平面上的点P(a,b)可分两步完成:‎ 第一步确定a的值,共有6种确定方法;‎ 第二步确定b的值,也有6种确定方法.‎ 根据分步乘法计数原理,得到平面上的点的个数是6×6=36.‎ ‎(2)确定第二象限的点,可分两步完成:‎ 第一步确定a,由于a<0,所以有3种确定方法;‎ 第二步确定b,由于b>0,所以有2种确定方法.‎ 由分步乘法计数原理,得到第二象限的点的个数是3×2=6.‎ 答案:(1)36 (2)6‎ ‎      两个计数原理的综合应用 ‎ (1)(2020·大同质检)如图所示,用4种不同的颜色涂在图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有(  )‎ A.72种 B.48种 C.24种 D.12种 ‎(2)(2020·金华十校联考)如果一个三位正整数“a1a2a3”满足a1<a2,且a2>a3,‎ 则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为(  )‎ A.240 B.204‎ C.729 D.920‎ ‎【解析】 (1)首先涂A有4种涂法,则涂B有3种涂法,C与A,B相邻,则C有2种涂法,D只与C相邻,则D有3种涂法,所以共有4×3×2×3=72种涂法.‎ ‎(2)若a2=2,则凸数为120与121,共1×2=2个.若a2=3,则凸数有2×3=6个.若a2=4,则凸数有3×4=12个,…,若a2=9,则凸数有8×9=72个.所以所有凸数有2+6+12+20+30+42+56+72=240个.‎ ‎【答案】 (1)A (2)A 与两个计数原理有关问题的解题策略 ‎(1)在综合应用两个计数原理解决问题时,一般是先分类再分步,但在分步时可能又会用到分类加法计数原理.‎ ‎(2)对于较复杂的两个计数原理综合应用的问题,可恰当地画出示意图或列出表格,使问题形象化、直观化.  ‎ ‎1.如图,某教师要从A地至B地参加高考教研活动:‎ 路线Ⅰ:A到B有三条路线;‎ 路线Ⅱ:A到C后再到B,其中A到C有1条路线,C到B有2条路线;‎ 路线Ⅲ:从A到D,D到C,C到B,其中A到D,D到C,C到B各有2条路线,则该教师的选择路线种数共有(  )‎ A.10 B.11‎ C.13 D.24‎ 解析:选C.按路线Ⅰ,共有3种选择;按路线Ⅱ,分2步可以到达B,共有1×2=2种选择;按路线Ⅲ,分3步,共有2×2×2=8种,故共有3+2+8=13种选择.‎ ‎2.满足a,b∈{-1,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为(  )‎ A.9 B.8‎ C.7 D.6‎ 解析:选D.由a,b的取值可知,ax2+2x+b=0有实数解的条件为Δ=22-4ab=4-4ab≥0,当a=-1时,b=-1,1,2,共3种情况,当a=1时,b=-1,1,共2种情况;当a=2时,b=-1,有1种情况,共有3+2+1=6种情况.‎ 核心素养系列20 数学抽象——计数原理中的新定义问题 ‎ 定义“规范01数列”{an}如下:{an}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,ak中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有(  )‎ A.18个          B.16个 C.14个 D.12个 ‎【解析】 由题意,“规范01数列”有偶数项,即2m项,且所含0与1个数相等,首项为0,末项为1,若m=4,说明数列有8项,得必有a1=0,a8=1,则具体的排法如下:00001111,00010111,00011011,00011101,00100111,00101011,00101101,00110011,00110101,01000111,01001011,01001101,01010011,01010101共14个.‎ ‎【答案】 C 组数、组点、组线、组队及抽取问题的解题思路 ‎(1)组数、组点、组线、组队问题:一般按特殊位置由谁占领分类,每类中再分步计数,当分类较多时,也可用间接法求解.‎ ‎(2)有限制条件的抽取问题:一般根据抽取的顺序分步或根据选取的元素特点分类,当数目不大时,可用枚举法,当数目较大时,可用间接法求解.  ‎ 用a代表红球,b代表蓝球,c代表黑球,由分类加法计数原理及分步乘法计数原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法是(  )‎ A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5‎ B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5‎ C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5)‎ D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)‎ 解析:选A.因为无区别,所以取红球的方法数为1+a+a2+a3+a4+a5;因为蓝球要都取出,或都不取出,所以方法为1+b5,因为黑球有区别,因此,取黑球的方法数为(1+c)5,所以所有取法数为(1+a+a2+a3+a4+a5)(1+b5)(1+c)5.故选A.‎ ‎[基础题组练]‎ ‎1.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+bi,‎ 其中虚数的个数是(  )‎ A.30           B.42‎ C.36 D.35‎ 解析:选C.因为a+bi为虚数,所以b≠0,即b有6种取法,a有6种取法,由分步乘法计数原理知可以组成6×6=36个虚数.‎ ‎2.用10元、5元和1元来支付20元钱的书款,不同的支付方法有(  )‎ A.3种 B.5种 C.9种 D.12种 解析:选C.只用一种币值有2张10元,4张5元,20张1元,共3种;‎ 用两种币值的有1张10元,2张5元;1张10元,10张1元;3张5元,5张1元;2张5元,10张1元;1张5元,15张1元,共5种;‎ 用三种币值的有1张10元,1张5元,5张1元,共1种.‎ 由分类加法计数原理得,共有3+5+1=9(种).‎ ‎3.某电话局的电话号码为139××××××××,若前六位固定,最后五位数字是由6或8组成的,则这样的电话号码的个数为(  )‎ A.20 B.25‎ C.32 D.60‎ 解析:选C.依据题意知,最后五位数字由6或8组成,可分5步完成,每一步有2种方法,根据分步乘法计数原理,符合题意的电话号码的个数为25=32.‎ ‎4.用数字1,2,3,4,5组成没有重复数字的五位数,其中偶数的个数为(  )‎ A.24 B.48‎ C.60 D.72‎ 解析:选B.先排个位,再排十位,百位,千位,万位,依次有2,4,3,2,1种排法,由分步乘法计数原理知偶数的个数为2×4×3×2×1=48.‎ ‎5.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为(  )‎ A.40 B.16‎ C.13 D.10‎ 解析:选C.分两类情况讨论:第1类,直线a分别与直线b上的8个点可以确定8个不同的平面;第2类,直线b分别与直线a上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13个不同的平面.‎ ‎6.如图所示,小圆圈表示网络的结点,结点之间的线段表示它们有网线相连,连线标注的数字,表示该段网线单位时间内可以通过的最大信息量,现从结点A向结点B传递信息,‎ 信息可以从分开不同的路线同时传递,则单位时间内传递的最大信息量为(  )‎ A.26 B.20‎ C.24 D.19‎ 解析:选D.因为信息可以从分开不同的路线同时传递,由分类加法计数原理,完成从A向B传递有四种办法:12→5→3;12→6→4;12→6→7;12→8→6.故单位时间内传递的最大信息量为四条不同网线上信息量的和:3+4+6+6=19.‎ ‎7.如图所示,使电路接通,开关不同的开闭方式有(  )‎ A.11种 B.20种 C.21种 D.12种 解析:选C.电路接通,则每一个并联电路中至少有一个开关闭合,再利用乘法原理求解.两个开关并联的电路接通方式有3种,即每个开关单独接通共2种.两个开关都接通有一种,所以共有3种,同理三个开关并联的电路接通方式有7种,由乘法原理可知不同的闭合方式有3×7=21(种).‎ ‎8.某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B,C,D中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复),有车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码可选的所有可能情况有(  )‎ A.180种 B.360种 C.720种 D.960种 解析:选D.按照车主的要求,从左到右第一个号码有5种选法,第二个号码有3种选法,其余三个号码各有4种选法.因此车牌号码可选的所有可能情况有5×3×4×4×4=960(种).‎ ‎9.直线l:+=1中,a∈{1,3,5,7},b∈{2,4,6,8}.若l与坐标轴围成的三角形的面积不小于10,则这样的直线的条数为(  )‎ A.6 B.7‎ C.8 D.16‎ 解析:选B.l与坐标轴围成的三角形的面积为 S=ab≥10,即ab≥20.‎ 当a=1时,不满足;当a=3时,b=8,即1条.‎ 当a∈{5,7}时,b∈{4,6,8},此时a的取法有2种,b的取法有3种,则直线l 的条数为2×3=6.故满足条件的直线的条数为1+6=7.故选B.‎ ‎10.在如图所示的五个区域中,现有四种颜色可供选择,要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为(  )‎ A.24种 B.48种 C.72种 D.96种 解析:选C.分两种情况:‎ ‎(1)A,C不同色,先涂A有4种,C有3种,E有2种,B,D有1种,有4×3×2=24(种).‎ ‎(2)A,C同色,先涂A有4种,E有3种,C有1种,B,D各有2种,有4×3×2×2=48(种).‎ 综上两种情况,不同的涂色方法共有48+24=72(种).‎ ‎11.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有________种(用数字作答).‎ 解析:第一步,先选出文娱委员,因为甲、乙不能担任,所以从剩下的3人中选1人当文娱委员,有3种选法.‎ 第二步,从剩下的4人中选学习委员和体育委员,又可分两步进行:先选学习委员有4种选法,再选体育委员有3种选法.由分步乘法计数原理可得,不同的选法共有3×4×3=36(种).‎ 答案:36‎ ‎12.乘积(a+b+c)(d+e+f+h)(i+j+k+l+m)展开后共有________项.‎ 解析:由(a+b+c)(d+e+f+h)(i+j+k+l+m)展开式各项都是从每个因式中选一个字母的乘积,由分步乘法计数原理可得其展开式共有3×4×5=60(项).‎ 答案:60‎ ‎13.在平面直角坐标系内,点P(a,b)的坐标满足a≠b,且a,b都是集合{1,2,3,4,5,6}中的元素.又点P到原点的距离|OP|≥5,则这样的点P的个数为________.‎ 解析:依题意可知:‎ 当a=1时,b=5,6,两种情况;‎ 当a=2时,b=5,6,两种情况;‎ 当a=3时,b=4,5,6,三种情况;‎ 当a=4时,b=3,5,6,三种情况;‎ 当a=5或6时,b各有五种情况.‎ 所以共有2+2+3+3+5+5=20种情况.‎ 答案:20‎ ‎14.如图所示,在A,B间有四个焊接点,若焊接点脱落,则可能导致电路不通.今发现A,B之间线路不通,则焊接点脱落的不同情况有________种.‎ 解析:采用排除法.各个焊点有2种情况,所以四个焊点共有24种可能,其中能使线路通的情况有:1,4同时通,且2和3至少有一个通时线路才能通,共有3种可能,故不通的情况共有24-3=13种情况.‎ 答案:13‎ ‎15.将4个不同小球放入3个不同的盒子,其中每个盒子都不空的放法共有________种.‎ 解析:必有一个盒子放2个小球,将4个小球分3组,其中有2个小球为一组,另外2个小球为两组,共有6种分组方法.然后,每一种分组的小球放入3个不同盒子,按分步乘法计数原理,有3×2×1种放法,共有6×(3×2×1)=36(种)放法.‎ 答案:36‎ ‎16.如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是________.‎ 解析:分类讨论:第1类,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有2×12=24个;第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).‎ 答案:36‎ ‎17.已知集合A={最大边长为7,且三边长均为正整数的三角形},则集合A的真子集共有________个.‎ 解析:另外两个边长用x,y(x,y∈N*)表示,且不妨设1≤x≤y≤7,要构成三角形,必须x+y≥8.‎ 当y取7时,x可取1,2,3,…,7,有7个三角形;‎ 当y取6时,x可取2,3,…,6,有5个三角形;‎ 当y取5时,x可取3,4,5,有3个三角形.‎ 当y取4时,x只能取4,只有1个三角形.‎ 所以所求三角形的个数为7+5+3+1=16.其真子集共有(216-1)个.‎ 答案:216-1‎ ‎[综合题组练]‎ ‎1.有一项活动需在3名老师,6名男同学和8名女同学中选人参加,‎ ‎(1)若只需一人参加,有多少种不同选法?‎ ‎(2)若需一名老师,一名学生参加,有多少种不同选法?‎ ‎(3)若需老师、男同学、女同学各一人参加,有多少种不同选法?‎ 解:(1)只需一人参加,可按老师、男同学、女同学分三类各自有3,6,8种方法,总方法数为3+6+8=17(种).‎ ‎(2)分两步,先选老师共3种选法,再选学生共6+8=14种选法,由分步乘法计数原理知,总方法数为3×14=42(种).‎ ‎(3)老师、男、女同学各一人可分三步,每步方法依次为3,6,8种,由分步乘法计数原理知,总方法数为3×6×8=144(种).‎ ‎2.同室四人各写一张贺年卡,先集中起来,然后每人从中各拿1张别人送出的贺年卡,则4张贺年卡不同的分配方式有几种?‎ 解:设四个人为甲、乙、丙、丁,依次写的贺年卡为A,B,C,D.‎ 第一步:甲有3种拿法,即拿了B,C或D.‎ 第二步:对甲的每一种拿法,不妨设拿了乙的B卡,则乙也有3种拿法,即拿A,C或D,有3种拿法.‎ 若乙拿了甲的A卡,则丙、丁只能是丙拿D,丁拿C.‎ 若乙拿了丙的C卡,则丙只能拿D卡,丁拿A卡.‎ 若乙拿了丁的D卡,则丁只能拿C卡,丙拿A卡.‎ 所以分配方式共有3×3=9(种).‎ ‎3.由数字1,2,3,4,‎ ‎(1)可组成多少个三位数?‎ ‎(2)可组成多少个没有重复数字的三位数?‎ ‎(3)可组成多少个没有重复数字,且百位数字大于十位数字,十位数字大于个位数字的三位数?‎ 解:(1)百位数共有4种排法;十位数共有4种排法;个位数共有4种排法,根据分步乘法计数原理知共可组成43=64个三位数.‎ ‎(2)百位上共有4种排法;十位上共有3种排法;个位上共有2种排法,由分步乘法计数原理知共可排成没有重复数字的三位数4×3×2=24(个).‎ ‎(3)排出的三位数分别是432、431、421、321,共4个.‎ ‎4.已知集合M={-3,-2,-1,0,1,2},若a,b,c∈M,则:‎ ‎(1)y=ax2+bx+c可以表示多少个不同的二次函数?‎ ‎(2)y=ax2+bx+c可以表示多少个图象开口向上的二次函数?‎ 解:(1)y=ax2+bx+c表示二次函数时,a的取值有5种情况,b的取值有6种情况,c的取值有6种情况,因此y=ax2+bx+c可以表示5×6×6=180个不同的二次函数.‎ ‎(2)当y=ax2+bx+c的图象开口向上时,a的取值有2种情况,b,c的取值均有6种情况,因此y=ax2+bx+c可以表示2×6×6=72个图象开口向上的二次函数.‎

相关文档