• 764.50 KB
  • 2021-06-10 发布

数学文卷·2018届四川省宜宾市南溪二中高三10月月考(2017

  • 10页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
宜宾市南溪区第二中学校高2015级10月 阶段性测试文科数学学科试题 出题人:陈娜 审题人:陈学林 考试时间120分钟,满分150分。‎ 一、选择题(本题共12小题,共60分)‎ ‎1、设, , ,且,则( )‎ A. B. C. D. ‎ ‎2、已知点A(1,3),B(4,﹣1),则与向量的方向相反的单位向量是(  )‎ A.(﹣,) B.(﹣,) C.(,﹣) D.(,﹣)‎ ‎3、函数的图象可能是( )‎ A. B. C. D. ‎ ‎4、在等差数列中,若为方程x2-10x+16=0的两根,则( )‎ A.10 B.15 C.20 D.40‎ ‎5、不等式的解集是,则的值等于 ( )‎ A. -14 B. ‎14 C. -10 D. 10‎ ‎6、等差数列的公差为2,若,,成等比数列,则的前n项和=( )‎ A. B. C. D. ‎ ‎7、已知ω>0,,直线和是函数f(x)=sin(ωx+φ)图像的两条相邻的对称轴,则φ=( )‎ A. B. C. D. ‎8、已知单位向量和的夹角为,记 , , 则向量与 的夹角为( )‎ A. B. C. D. ‎ ‎9、已知为第二象限角,,则( )‎ A. B. C. D.‎ ‎10、在△ABC中,A、B、C所对的边分别为a、b、c,若bcosA+acosB=c2,a=b=2,则△ABC的周长为( )‎ A.7.5 B.‎7 ‎C.6 D.5‎ 11、 已知函数y= f (x) 的周期为2,当x时 f (x) =x2,那么函数 y = f (x) 的图像与函数y =的图像的交点共有( )‎ A. 10个 B. 9个 C. 8个 D. 1个 ‎12、已知是定义在区间上的函数,其导函数为,且不等式 恒成立,则( )‎ A. B. C. D.‎ 二、填空题(本题共4小题,共20分)‎ ‎13、计算: .‎ ‎14、已知幂函数的图像过点,则= .‎ ‎15、等比数列{an}的前n项和为Sn,若S3+3S2=0,则公比q = .‎ ‎16、设曲线在点(1,1)处的切线与轴的交点的横坐标为,‎ 令,则 .‎ ‎17、(12分)等差数列{}中,‎ ‎(I)求{}的通项公式;‎ ‎(II)设=[],求数列{‎ ‎}的前10项和,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2‎ ‎18、(12分)已知函数.‎ ‎(1)求的单调递增区间;‎ ‎(2)在△ABC中,三内角A,B,C的对边分别为a,b,c,已知,‎ b,a,c成等差数列,且,求a的值.‎ ‎19、 (12分)已知数列的前项和为,,.‎ ‎(1)求数列的通项公式;‎ ‎(2)记求的前项和.‎ ‎20、(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.‎ ‎(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式. ‎ ‎(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:‎ 日需求量n ‎14‎ ‎15‎ ‎16‎ ‎17‎ ‎18‎ ‎19‎ ‎20‎ 频数 ‎10‎ ‎20‎ ‎16‎ ‎16‎ ‎15‎ ‎13‎ ‎10‎ ‎(1)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;‎ ‎(2)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.‎ ‎21.(12分)已知函数 ‎(Ⅰ) 若在其定义域内为单调递减函数,求的取值范围;‎ ‎(Ⅱ) 是否存在实数a,使得当时,不等式恒成立,如果存在,求a的取值范围,如果不存在,说明理由(其中e是自然对数的底数,e=2.71828…).‎ 22、 ‎[选修4―4:坐标系与参数方程](10分)‎ ‎ 在直角坐标系中,曲线的参数方程为为参数),以原点为极点,轴正半轴为极轴(两坐标系取相同的长度单位)的极坐标系中,曲线:。‎ (1) 求曲线的普通方程与曲线的直角坐标方程;  (2)分别是曲线和曲线上的动点,求最小值. ‎ ‎23、[选修4-5:不等式选讲](10分)‎ ‎(1)若不等式成立的充分不必要条件为,求实数的取值范围.‎ ‎(2)已知a,b是正数,且a+b=1,求证:‎ 南溪二中2015级高三上期10月月考(文)答案 一.选择题 ‎1、C 2、A 3、B 4、B 5、C 6、A ‎7A、‎8C、‎9A、10D、11、A 12、B 二、 填空题:‎ ‎13、 2 14、2 15、 -2 16、-4‎ 三 解答题:(应写出文字说明,证明过程或演算步骤)‎ ‎17、‎ ‎18.试题解析:(1)‎ 由得,故的单调递增区间是 ‎(2)‎ 于是,故,由成等差数列得:,‎ 由得,由余弦定理得,,于是 ‎19、.解析:(1)当时,由及,得,即,解得.又由,① 可知,② ②-①得,即.且时,适合上式,因此数列是以为首项,为公比的等比数列,故.‎ ‎(2)由(1)及,可知,所以 ‎ ‎20、某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.‎ ‎(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式. ‎ ‎(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:‎ 日需求量n ‎14‎ ‎15‎ ‎16‎ ‎17‎ ‎18‎ ‎19‎ ‎20‎ 频数 ‎10‎ ‎20‎ ‎16‎ ‎16‎ ‎15‎ ‎13‎ ‎10‎ ‎(1)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;‎ ‎(2)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.‎ ‎21.(Ⅰ) 由于,其中x>0,‎ 只需在x>0时恒成立,‎ ‎①当a≤0时,,于是在(0,+∞)为减函数,‎ ‎②当a>0时,由在x>0时恒成立,即在x>0恒成立,‎ 可知当x>0时,,‎ 由得,这与a>0不符,舍去.‎ 综上所述,a的取值范围是.‎ ‎(Ⅱ) .‎ ‎(ⅰ) 当a≤0时,,于是在(0,+∞)为减函数,则在[e,e²]也为减函数,‎ 知<0恒成立,不合题意,舍去.‎ ‎(ⅱ) 当a>0时,由得.列表得 x ‎(0,)‎ ‎(,+∞)‎ ‎+‎ ‎0‎ ‎-‎ ‎↗‎ 极大值 ‎↘‎ ‎①若,即,此时在[e,e²]上单调递减, ‎ 知,而,‎ 于是<0恒成立,不合题意,舍去.‎ ‎②若,即时,‎ 此时在(e,上为增函数,在(,+∞)上为减函数, ‎ 要使在[e,e²]恒有恒成立,则必有 则所以 由于,则,所以.‎ 综上所述,存在实数,使得恒成立.‎ ‎22.解:(Ⅰ)‎ ‎∴整理得:‎ ‎ ‎ ‎ ∴的普通方程为:‎ ‎ 曲线,‎ ‎ 整理:‎ ‎ ∴直角坐标方程:(5分)‎ ‎ (Ⅱ)如图:‎ ‎ 圆心(0,1)到直线C1的距离为d, ‎ ‎ ∴(10分) ‎ ‎23.解:(1)由|x﹣m|<1得﹣1<x﹣m<1,即m﹣1<x<m+1,‎ 若不等式|x﹣m|<1成立的充分不必要条件为<x<,‎ 则(,)?(m﹣1,m+1),‎ 即,得,即≤m≤,‎ 即实数m的取值范围是≤m≤.‎ ‎(2)证明:∵a,b是正数,且a+b=1,‎ ‎∴(ax+by)(bx+ay)=abx2+(a2+b2)xy+aby2‎ ‎=ab(x2+y2)+(a2+b2)xy ‎ ‎≥ab?2xy+(a2+b2)xy ‎ ‎=(a+b)2xy ‎=xy,‎ ‎∴(ax+by)(bx+ay)≥xy成立.‎

相关文档