- 125.00 KB
- 2021-06-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
1.在△ABC中,∠C=90°,且CA=CB=3,点M满足=2,则·等于( )
A.2 B.3
C.4 D.6
【解析】由题意可知,
·=·=·+·=0+×3×3cos45°=3。
【答案】B
2.已知向量a=(cosα,-2),b=(sinα,1),且a∥b,则2sinαcosα等于( )
A.3 B.-3
C. D.-
【答案】D
3.已知a=(1,sin2x),b=(2,sin2x),其中x∈(0,π).若|a·b|=|a||b|,则tanx的值等于( )
A.1 B.-1
C. D.
【解析】由|a·b|=|a||b|知,a∥b。
所以sin2x=2sin2x,即2sinxcosx=2sin2x,
而x∈(0,π),
所以sinx=cosx,即x=,故tanx=1。
【答案】A
4.若|a|=2sin15°,|b|=4cos15°,a与b的夹角为30°,则a·b的值是( )
A. B.
C.2 D.
【解析】a·b=|a||b|cos30°=8sin15°cos15°×=4×sin30°×=。
11.已知F1,F2分别为椭圆C:+=1的左、右焦点,点E是椭圆C上的动点,则·
的最大值、最小值分别为( )
A.9,7 B.8,7
C.9,8 D.17,8
【答案】B
12.若直线ax-y=0(a≠0)与函数f(x)=的图象交于不同的两点A,B,且点C(6,0),若点D(m,n)满足+=,则m+n等于( )
A.1 B.2
C.3 D.4
【答案】B
【解析】因为f(-x)===-f(x),且直线ax-y=0过坐标原点,所以直线与函数f(x)=的图象的两个交点A,B关于原点对称,即xA+xB=0,yA+yB=0,又=(xA-m,yA-n),=(xB-m,yB-n),=(m-6,n),由+=,得xA-m+xB-m=m-6,yA-n+yB-n=n,解得m=2,n=0,所以m+n=2,故选B.
13.已知O是平面上的一定点,A,B,C是平面上不共线的三个动点,若动点P满足=+λ, λ∈(0,+∞),则( )
A.动点P的轨迹一定通过△ABC的重心
B.动点P的轨迹一定通过△ABC的内心
C.动点P的轨迹一定通过△ABC的外心
D.动点P的轨迹一定通过△ABC的垂心
【答案】D
14.已知共面向量a,b,c满足|a|=3,b+c=2a,且|b|=|b-c|.若对每一个确定的向量b,记|b-ta|(t∈R)的最小值为dmin,则当b变化时,dmin的最大值为( )
A. B.2
C.4 D.6
【答案】B
【解析】固定向量a=(3,0),则b,c向量分别在以(3,0)为圆心,r为半径的圆上的直径两端运动,其中,=a,=b,=c,如图,易得点B的坐标
19.已知O为△ABC内一点,且++2=0,则△AOC与△ABC的面积之比是________.
【答案】1∶2
【解析】如图所示,取AC的中点D,
20.如图所示,半圆的直径AB=6,O为圆心,C为半圆上不同于A,B的任意一点,若P为半径OC
上的动点,则(+)·的最小值为________.
【答案】-
【解析】∵圆心O是直径AB的中点,
∴+=2,∴(+)·=2·,
∵||+||=3≥2,
∴||·||≤,
即(+)·=2·=-2||·||≥-,当且仅当||=||=时,等号成立,
故最小值为-.
21.若向量a=,b=,且a∥b,则锐角α的大小是________。
【解析】因为a∥b,所以×-sinαcosα=0,
所以sin2α=1,又α为锐角,故α=。
【答案】
22.设△ABC的内角A,B,C所对的边分别为a,b,c,若(3b-c)cosA=acosC,S△ABC=,则·=__________。
【答案】-1
23.已知平面上一定点C(2,0)和直线l:x=8,P为该平面上一动点,作PQ⊥l ,垂足为Q,且
·=0,则点P到点C的距离的最大值是__________。
【解析】设P(x,y),则Q(8,y),
由·=0,得
||2-||2=0,
即(x-2)2+y2-(x-8)2=0,
化简得+=1,所以点P的轨迹是焦点在x轴上的椭圆,且a=4,b=2,c=2,点C是其右焦点。
故|PC|max=a+c=4+2=6。
【答案】6
24.已知△ABC的三个内角A,B,C所对的边分别为a,b,c,向量m=(a+c,b-a),n=(a-c,b),且m⊥n。
(1)求角C的大小。
(2)若向量s=(0,-1),t=,试求|s+t|的取值范围。
【解析】(1)由题意得m·n=(a+c,b-a)·(a-c,b)=a2-c2+b2-ab=0,即c2=a2+b2-ab。由余弦定理得cosC==。因为0<C<π,所以C=。