• 553.00 KB
  • 2021-06-11 发布

数学理卷·2017届山东省枣庄市第四十六中学高三4月阶段性自测(2017

  • 9页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎ 2017届山东省枣庄四十六中中高三数学(理)4月阶段性自测题 学校:___________姓名:___________班级:___________考号:___________‎ 一、选择题 ‎1.已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩∁UB=(  )‎ A.{2,5} B.{3,6} C.{2,5,6} D.{2,3,5,6,8}‎ ‎2.下列命题中,是真命题的是(  )‎ A.∃ x0∈R,ex0 ≤0‎ B.∀ x∈R,2x >x2‎ C.已知a,b为实数,则a+b=0的充要条件是=﹣1‎ D.已知a,b为实数,则a>1,b>1是ab>1的充分条件 ‎3.已知,则复数z=(  )‎ A.1﹣3i B.﹣1﹣3i C.﹣1+3i D.1+3i ‎4.执行如图所示的程序框图,如果输入a=6,b=2,则输出的S=(  )‎ A.30 B.120 C.360 D.720‎ ‎5.某几何体的三视图如图所示,则该几何体的体积为 ‎ A. 2 B. 1 C. D.‎ ‎6.已知函数f(x)=x3+2x﹣1(x<0)与g(x)=x3﹣log2(x+a)+‎ ‎1的图象上存在关于原点对称的点,则实数a的取值范围为(  )‎ A.(﹣∞,2) B.(0,) C.(,2) D.(0,2)‎ ‎7.已知数列{an}的前n项和为Sn,若Sn=1+2an(n≥2),且a1=2,则S20(  )‎ A.219﹣1 B.221﹣2 C.219+1 D.221+2‎ ‎8.将函数图象上的点向右平移个单位长度得到点,若位于函数的图象上,则 ‎ A.,的最小值为 B. ,的最小值为 ‎ ‎ C. ,的最小值为 D. ,的最小值为 ‎9.已知m>0,n>0,2m+n=1,则+的最小值为(  )‎ A.4 B.2 C.8 D.16‎ ‎10.若双曲线C:(a>0,b>0)的一条渐近线的倾斜角是直线l:x﹣2y+1=0倾斜角的两倍,则双曲线的离心率为(  )‎ A. B.C.D.‎ ‎ 二、填空题 ‎11.已知定义在(﹣1,1)上的奇函数f(x),当x∈(0,1)时,f(x)=x2﹣1,若 f(x0)=,则x0=  .‎ ‎12.已知圆C:(x﹣3)2+(y﹣4)2=1和两点A(﹣m,0),B(m,0)(m>0),若圆C上不存在点P,使得∠APB为直角,则实数m的取值范围是  .‎ ‎13.若直线y=kx+b是曲线y=lnx+1的切线,也是曲线y=ln(x+2)的切线,则b=  .‎ ‎14.实数x,y满足,若2x﹣y≥m恒成立,则实数m的取值范围是  .‎ ‎15.已知随机变量服从正态分布,且,则___________.‎ ‎,三、解答题 ‎16.已知函数(a>0,a≠1)是奇函数.‎ ‎(1)求实数m的值;‎ ‎(2)判断函数f(x)在(1,+∞)上的单调性,并给出证明;‎ ‎(3)当x∈(n,a﹣2)时,函数f(x)的值域是(1,+∞),求实数a与n的值.‎ ‎17.已知数列的前项和为,且满足,‎ ‎ (1)求数列的通项公式;‎ ‎ (2)若,求数列的前项和.‎ ‎18.设函数 f(x)=sinωx·cosωx-cos2ωx+(ω>0)的图象上相邻最高点与最低点的距离为.‎ ‎(1)求ω的值;‎ ‎(2)若函数y=f(x+φ)(0<φ<)是奇函数,求函数g(x)=cos(2x-φ)在上的单调递减区间. ‎ ‎19.如图,在四棱锥P﹣ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=AD,E为棱AD的中点,异面直线PA与CD所成的角为90°.‎ ‎(Ⅰ)证明:CD⊥平面PAD;‎ ‎(Ⅱ)若二面角P﹣CD﹣A的大小为45°,求直线PA与平面PCE所成角的正弦值.‎ ‎20.已知椭圆E:中,a=b,且椭圆E上任一点到点的最小距离为.‎ ‎(1)求椭圆E的标准方程;‎ ‎(2)如图4,过点Q(1,1)作两条倾斜角互补的直线l1,l2(l1,l2不重合)分别交椭圆E于点A,C,B,D,求证:|QA|•|QC|=|QB|•|QD|.‎ ‎21.已知函数f(x)=﹣2x,g(x)=alnx.‎ ‎(1)讨论函数y=f(x)﹣g(x)的单调区间 ‎(2)设h(x)=f(x)﹣g(x),若对任意两个不等的正数x1,x2,都有>2恒成立,求实数a的取值范围.‎ 试卷答案 ‎1.A ‎2.D ‎3.A ‎4.B ‎5.D ‎6.D ‎7.B ‎8.C ‎9.C ‎10.A ‎11.﹣‎ ‎12.(0,4)∪(6,+∞)‎ ‎13.ln2‎ ‎14.(﹣∞,﹣]‎ ‎15.0.3‎ ‎16.【解答】解:(1)∵函数(a>0,a≠1)是奇函数.‎ ‎∴f(﹣x)+f(x)=0解得m=﹣1.‎ ‎(2)由(1)及题设知:,‎ 设,‎ ‎∴当x1>x2>1时,‎ ‎∴t1<t2.‎ 当a>1时,logat1<logat2,即f(x1)<f(x2).‎ ‎∴当a>1时,f(x)在(1,+∞)上是减函数.‎ 同理当0<a<1时,f(x)在(1,+∞)上是增函数.‎ ‎(3)由题设知:函数f(x)的定义域为(1,+∞)∪(﹣∞,﹣1),‎ ‎∴①当n<a﹣2≤﹣1时,有0<a<1.由(1)及(2)题设知:f(x)在为增函数,由其值域为(1,+∞)知(无解);‎ ‎②当1≤n<a﹣2时,有a>3.由(1)及(2)题设知:f(x)在(n,a﹣2)为减函数,由其值域为(1,+∞)知 得,n=1.‎ ‎17.‎ ‎18.(1);(2),.‎ 试题分析:(1)根据二倍角的正弦余弦公式及两角差的正弦公式可将化为,根据可得,从而得;(2)是奇函数,则可得,,根据余弦函数的单调性可得函数在上的单调递减区间.‎ ‎(2)由(1)可知,∴,‎ ‎∵是奇函数,则,又,‎ ‎∴,‎ ‎∴,‎ 令,,‎ 则, ‎∴单调递减区间是,‎ 又∵,‎ ‎∴当时,递减区间为;‎ 当时,递减区间为.‎ ‎∴函数在上的单调递减区间是,.‎ ‎19.【解答】(Ⅰ)证明:由已知,PA⊥CD,‎ 又∠ADC=90°,即CD⊥AD,且PA∩AD=A,‎ ‎∴CD⊥平面PAD;‎ ‎(Ⅱ)解:∵CD⊥平面PAD,∴∠PDA为二面角P﹣CD﹣A的平面角,从而∠PDA=45°.‎ 如图所示,在平面ABCD内,作Ay⊥AD,以A为原点,分别以AD,AP所在直线为x轴,z轴建立空间直角坐标系A﹣xyz,‎ 设BC=1,则A(0,0,0),P(0,0,2),E(1,0,0),‎ C(2,1,0),‎ ‎∴,,.‎ 设平面PCE的一个法向量,‎ 则,取x=2,则.‎ 设直线PA与平面PCE所成角为α,‎ 则.‎ ‎∴直线PA与平面PCE所成角的正弦值为.‎ ‎【点评】本题考查线面垂直的判定,考查利用空间向量求解线面角,是中档题.‎ ‎20.【解答】(1)解:设M(x,y)为椭圆E上任一点,由,‎ 则椭圆E的方程可化为,‎ 从而.‎ 由于a>b>1,则当x=﹣1时,,‎ 故椭圆E的标准方程为.‎ ‎(2)证明:由于直线l1,l2不重合,则直线l1,l2的斜率均存在,‎ 设直线l1:y=k(x﹣1)+1,点A(x1,y1),C(x2,y2).‎ 易知直线l2:y=﹣k(x﹣1)+1.,‎ 由得(1+2k2)x2+4k(1﹣k)x+2(1﹣k)2﹣4=0,‎ 由韦达定理有:,,‎ 则;‎ 同理可得,‎ 从而有|QA|•|QC|=|QB|•|QD|.‎ ‎21.【解答】解:(1)y=f(x)﹣g(x)=x2﹣2x﹣alnx,‎ y′=x﹣2﹣==,‎ 令m(x)=(x﹣1)2﹣a﹣1,‎ ‎①﹣a﹣1≥0即a≤﹣1时,‎ y′>0,函数在(0,+∞)递增,‎ ‎②﹣a﹣1<0,即a>﹣1时,‎ 令m′(x)>0,解得:x>1+>1,或x<1﹣<0,(舍),‎ 令m′(x)<0,解得:0<x<1+,‎ 故函数y=f(x)﹣g(x)在(0,1+)递减,在(1+,+∞)递增;‎ ‎(2)由(1)得:h′(x)=>2,‎ 故x2﹣2x﹣a>2x在(0,+∞)恒成立,‎ 即a<x2﹣4x在(0,+∞)恒成立,‎ 令m(x)=x2﹣4x,(x>0),‎ 则m(x)=(x﹣2)2﹣4≥﹣4,‎ 故a<﹣4.‎

相关文档